Water-glass based silica aerogel: unique nanostructured filler for epoxy nanocomposites


Due to the unique properties such as 3-dimensional nanoporous structure and high surface area, silica aerogel is a promising candidate for replacing the conventional micron-sized silica to improve the mechanical properties of epoxy-based nanocomposites. In the present study, the water-glass based silica aerogel was first synthesized by the low-cost sodium silicate and cheap ambient pressure drying method and then used as the filler in the epoxy system. Finally, rheological and mechanical properties of the silica aerogel-epoxy nanocomposite were investigated. The introduction of silica aerogel powders impacted the rheological properties of epoxy dispersion and improved the mechanical performance of the corresponding nanocomposite. The dispersion microstructure has been characterized by its rheological properties and has been used to determine the critical silica aerogel weight fraction of the network formation (φ*) for the silica aerogel-epoxy dispersion. At the critical filler concentrations (φ*), the overall mobility of the polymer chains is restricted in both dispersion and solid nanocomposites. Therefore, the network structure and the interface surrounding nanoparticles increases and this results in an improvement of the mechanical properties. Mechanical tests showed improvements in flexural modulus and strength by ~ 80% and ~ 40% respectively as compared with those of pure epoxy. Based on this study, water-glass based silica aerogel hold great promise as a low-cost filler in polymer composite.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

With permission of Ref. [36]

Fig. 3
Fig. 4

With permission of Ref. [60]

Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Z.T. Mazraeh-shahi, A.M. Shoushtari, M. Abdouss, A.R. Bahramian, Relationship analysis of processing parameters with micro and macro structure of silica aerogel dried at ambient pressure. J. Non-Cryst. Solids 376, 30–37 (2013)

    CAS  Google Scholar 

  2. 2.

    Z. Mazrouei-Sebdani, S. Salimian, A. Khoddami, F. Shams-Ghahfarokhi, Sodium silicate based aerogel for absorbing oil from water: the impact of surface energy on the oil/water separation. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab1eed

    Article  Google Scholar 

  3. 3.

    K.M. Saoud, S. Saeed, M.F. Bertino, L.S. White, Fabrication of strong and ultra-lightweight silica-based aerogel materials with tailored properties. J. Porous Mater. 25, 511–520 (2018)

    CAS  Google Scholar 

  4. 4.

    H. Maleki, L. Durães, A. Portugal, An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids 385, 55–74 (2014)

    CAS  Google Scholar 

  5. 5.

    Z.T. Mazraeh-shahi, A.M. Shoushtari, A. Bahramian, A new approach for synthesizing the hybrid silica aerogels. Procedia Mater. Sci. 11, 571–575 (2015)

    CAS  Google Scholar 

  6. 6.

    Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini, A novel method to manufacture superhydrophobic and insulating polyester nanofibers via a meso-porous aerogel powder. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 9, pp. 71–74

  7. 7.

    Z.T. Mazraeh-shahi, A.M. Shoushtari, A. Bahramian, A new method for measuring the thermal insulation properties of fibrous silica aerogel composite. Procedia Mater. Sci. 11, 583–587 (2015)

    CAS  Google Scholar 

  8. 8.

    Y. Zhang, F. Wang, P. Ou, H. Zhu, Y. Zhao, L. Wang et al., Prepared multifunctional aerogel for high performance supercapacitors and effective adsorbents. Mater. Res. Express 5, 055508 (2018)

    Google Scholar 

  9. 9.

    N. Hüsing, U. Schubert, Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998)

    Google Scholar 

  10. 10.

    Y. Duan, S.C. Jana, A.M. Reinsel, B. Lama, M.P. Espe, Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes. Langmuir 28, 15362–15371 (2012)

    CAS  PubMed  Google Scholar 

  11. 11.

    Z.T. Mazraeh-Shahi, A.M. Shoushtari, A.R. Bahramian, M. Abdouss, Synthesis, pore structure and properties of polyurethane/silica hybrid aerogels dried at ambient pressure. J. Ind. Eng. Chem. 21, 797–804 (2015)

    Google Scholar 

  12. 12.

    X. Wang, S.C. Jana, Synergistic hybrid organic–inorganic aerogels. ACS Appl. Mater. Interfaces 5, 6423–6429 (2013)

    CAS  PubMed  Google Scholar 

  13. 13.

    Z.T. Mazraeh-shahi, A.M. Shoushtari, A.R. Bahramian, M. Abdouss, Synthesis, structure and thermal protective behavior of silica aerogel/PET nonwoven fiber composite. Fibers Polym. 15, 2154–2159 (2014)

    CAS  Google Scholar 

  14. 14.

    L. Li, B. Yalcin, B.N. Nguyen, M.A.B. Meador, M. Cakmak, Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization. ACS Appl. Mater. Interfaces 1, 2491–2501 (2009)

    CAS  PubMed  Google Scholar 

  15. 15.

    A. Du, B. Zhou, Z. Zhang, J. Shen, A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6, 941–968 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    S. Salimian, A. Zadhoush, A. Mohammadi, A review on new mesostructured composite materials: Part I. synthesis of polymer-mesoporous silica nanocomposite. J. Reinf. Plast. Compos. 37, 441–459 (2018)

    CAS  Google Scholar 

  17. 17.

    A. Du, B. Zhou, Y. Li, X. Li, J. Ye, L. Li et al., Aerogel: a potential three-dimensional nanoporous filler for resins. J. Reinf. Plast. Compos. 30, 912–921 (2011)

    CAS  Google Scholar 

  18. 18.

    M. Rahmat, B. Ashrafi, A. Naftel, D. Djokic, Y. Martinez Rubi, M. Jakubinek et al., Enhanced shear performance of hybrid glass fibre-epoxy laminates modified with boron nitride nanotubes. ACS Appl. Nano Mater. (2018). https://doi.org/10.1021/acsanm.8b00413

    Article  Google Scholar 

  19. 19.

    F. Rahmani, S. Nouranian, Thermal analysis of montmorillonite/graphene double-layer coating as a potential lightning strike protective layer for crosslinked epoxy by molecular dynamics simulation. ACS Appl. Nano Mater. (2018). https://doi.org/10.1021/acsanm.8b00758

    Article  Google Scholar 

  20. 20.

    M. Naeimirad, A. Zadhoush, R.E. Neisiany, Fabrication and characterization of silicon carbide/epoxy nanocomposite using silicon carbide nanowhisker and nanoparticle reinforcements. J. Compos. Mater. 50, 435–446 (2016)

    CAS  Google Scholar 

  21. 21.

    S. Safi, A. Zadhoush, M. Ahmadi, Flexural and Charpy impact behaviour of epoxy/glass fabric treated by nano-SiO2 and silane blend. Plast. Rubber Compos. 46, 314–321 (2017)

    CAS  Google Scholar 

  22. 22.

    A. Mohammadi, A. Valipouri, S. Salimian, Nanoparticle-loaded highly flexible fibrous structures exhibiting desirable thermoelectric properties. Diam. Relat. Mater. 86, 54–62 (2018)

    CAS  Google Scholar 

  23. 23.

    R.E. Neisiany, S.N. Khorasani, J.K.Y. Lee, M. Naeimirad, S. Ramakrishna, Interfacial toughening of carbon/epoxy composite by incorporating styrene acrylonitrile nanofibers. Theor. Appl. Fract. Mech. 95, 242–247 (2018)

    CAS  Google Scholar 

  24. 24.

    W. Li, J. Kong, T. Wu, L. Gao, Z. Ma, Y. Liu et al., Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles. Mater. Res. Express 5, 046202 (2018)

    Google Scholar 

  25. 25.

    S. Das, S. Halder, A. Sinha, M.A. Imam, N.I. Khan, Assessing nanoscratch behavior of epoxy nanocomposite toughened with silanized fullerene. ACS Appl. Nano Mater. 1, 3653–3662 (2018)

    CAS  Google Scholar 

  26. 26.

    Z. Raolison, C. Lefevre, J. Neige, A. Adenot-Engelvin, J. Greneche, N. Vukadinovic et al., Structural and microwave properties of silica-coated NiFeMo flakes/polymer composites. Mater. Res. Express 2, 026101 (2015)

    Google Scholar 

  27. 27.

    S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    CAS  Google Scholar 

  28. 28.

    B. Li, P. I. Xidas, E. Manias, High breakdown strength polymer nanocomposites based on the synergy of nanofiller orientation and crystal orientation for insulation and dielectric applications. ACS Appl. Nano Mater. (2018)

  29. 29.

    S. Razavi, R.E. Neisiany, S.N. Khorasani, S. Ramakrishna, F. Berto, Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite. Theor. Appl. Mech. Lett. 8, 126–131 (2018)

    Google Scholar 

  30. 30.

    S. Salimian, A. Zadhoush, A. Mohammadi, A review on new mesostructured composite materials: Part II. Characterization and properties of polymer–mesoporous silica nanocomposite. J. Reinf. Plast. Compos. 37, 738–769 (2018)

    CAS  Google Scholar 

  31. 31.

    M.A. Van Meer, B. Narasimhan, B.H. Shanks, S.K. Mallapragada, Effect of mesoporosity on thermal and mechanical properties of polystyrene/silica composites. ACS Appl. Mater. Interfaces 2, 41–47 (2009)

    Google Scholar 

  32. 32.

    Y. Chen, L. Wu, J. Zhu, Y. Shen, S. Gan, A. Chen, An organic/inorganic hybrid mesoporous silica membrane: preparation and characterization. J. Porous Mater. 18, 251–258 (2011)

    CAS  Google Scholar 

  33. 33.

    X. Ji, J.E. Hampsey, Q. Hu, J. He, Z. Yang, Y. Lu, Mesoporous silica-reinforced polymer nanocomposites. Chem. Mater. 15, 3656–3662 (2003)

    CAS  Google Scholar 

  34. 34.

    C. Amgoth, S. Joshi, Thermosensitive block copolymer [(PNIPAM)-b-(Glycine)] thin film as protective layer for drug loaded mesoporous silica nanoparticles. Mater. Res. Express 4, 105306 (2017)

    Google Scholar 

  35. 35.

    S. Salimian, A. Zadhoush, M. Naeimirad, R. Kotek, S. Ramakrishna, A review on aerogel: 3D nanoporous structured fillers in polymer based nanocomposites. Polym. Compos. 39, 3383–3408 (2017)

    Google Scholar 

  36. 36.

    S. Salimian, W.J. Malfait, A. Zadhoush, Z. Talebi, M. Naeimirad, Fabrication and evaluation of silica aerogel-epoxy nanocomposites: fracture and toughening mechanisms. Theor. Appl. Fract. Mech. 97, 156–164 (2018). https://doi.org/10.1016/j.tafmec.2018.08.007

    CAS  Article  Google Scholar 

  37. 37.

    H. Najafi, A. Zadhoush, Z. Talebi, S.P. Rezazadeh Tehrani, Influence of porosity and aspect ratio of nanoparticles on the interface modification of glass/epoxy composites. Polym. Compos. 39, 3073–3080 (2017)

    Google Scholar 

  38. 38.

    J. P. Zhao, D. T. Ge, S. L. Zhang, and X. L. Wei, Studies on thermal property of silica aerogel/epoxy composite, in Materials Science Forum, 2007, pp. 1581–1584

  39. 39.

    N. Gupta, W. Ricci, Processing and compressive properties of aerogel/epoxy composites. J. Mater. Process. Technol. 198, 178–182 (2008)

    CAS  Google Scholar 

  40. 40.

    Z.A. Abdul Halim, M.A. Mat Yajid, M.H. Idris, H. Hamdan, Dispersion of polymeric-coated-silica aerogel particles in unsaturated polyester composites: effects on thermal-mechanical properties. J. Dispers. Sci. Technol. 39, 1093–1101 (2018)

    CAS  Google Scholar 

  41. 41.

    G.G. Kaya, E. Yilmaz, H. Deveci, Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: enhanced thermal and acoustic insulation performance. Composite B 150, 1–6 (2018)

    Google Scholar 

  42. 42.

    S. Salimian, A. Zadhoush, Z. Talebi, B. Fischer, P. Winiger, F. Winnefeld et al., Silica aerogel-epoxy nanocomposites: understanding epoxy reinforcement in terms of aerogel surface chemistry and epoxy-silica interface compatibility. ACS Appl. Nano Mater. 1, 4179–4189 (2018). https://doi.org/10.1021/acsanm.8b00941

    CAS  Article  Google Scholar 

  43. 43.

    T.-H. Hsieh, Y.-S. Huang, M.-Y. Shen, Mechanical properties and toughness of carbon aerogel/epoxy polymer composites. J. Mater. Sci. 50, 3258–3266 (2015)

    CAS  Google Scholar 

  44. 44.

    Z. Wang, X. Shen, M. Akbari Garakani, X. Lin, Y. Wu, X. Liu et al., Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mater. Interfaces 7, 5538–5549 (2015)

    CAS  PubMed  Google Scholar 

  45. 45.

    J. Tarrio-Saavedra, J. López-Beceiro, S. Naya, R. Artiaga, Effect of silica content on thermal stability of fumed silica/epoxy composites. Polym. Degrad. Stab. 93, 2133–2137 (2008)

    CAS  Google Scholar 

  46. 46.

    N. Suzuki, S. Kiba, Y. Yamauchi, Bimodal filler system consisting of mesoporous silica particles and silica nanoparticles toward efficient suppression of thermal expansion in silica/epoxy composites. J. Mater. Chem. 21, 14941–14947 (2011)

    CAS  Google Scholar 

  47. 47.

    J. Jiao, X. Sun, T.J. Pinnavaia, Mesostructured silica for the reinforcement and toughening of rubbery and glassy epoxy polymers. Polymer 50, 983–989 (2009)

    CAS  Google Scholar 

  48. 48.

    S. Kumar, S. Krishnan, S.K. Samal, S. Mohanty, S.K. Nayak, Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review. Ind. Eng. Chem. Res. 57, 2711–2726 (2018)

    CAS  Google Scholar 

  49. 49.

    Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini, Synthesis and performance evaluation of the aerogel-filled PET nanofiber assemblies prepared by electro-spinning. RSC Adv. 5, 12830–12842 (2015)

    CAS  Google Scholar 

  50. 50.

    ASTM D695-15, Standard Test Method for Compressive Properties of Rigid Plastics, ASTM International, West Conshohocken, PA, www.astm.org (2015)

  51. 51.

    ASTM D790-17, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, www.astm.org (2017)

  52. 52.

    Y. Duan, S.C. Jana, B. Lama, M.P. Espe, Reinforcement of silica aerogels using silane-end-capped polyurethanes. Langmuir 29, 6156–6165 (2013)

    CAS  PubMed  Google Scholar 

  53. 53.

    O. van den Berg, J.R. Capadona, C. Weder, Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromol 8, 1353–1357 (2007)

    Google Scholar 

  54. 54.

    N.A. Dudukovic, L.L. Wong, D.T. Nguyen, J.F. Destino, T.D. Yee, F.J. Ryerson et al., Predicting nanoparticle suspension viscoelasticity for multimaterial 3D printing of silica-titania glass. ACS Appl. Nano Mater. 1, 4038–4044 (2018)

    CAS  Google Scholar 

  55. 55.

    T.-X. Lin, K.-J. Chen, P.-Y. Chen, J.-S. Jan, Broadband antireflection coatings based on low surface energy/refractive index silica/fluorinated polymer nanocomposites. ACS Appl. Nano Mater. 1, 741–750 (2018)

    CAS  Google Scholar 

  56. 56.

    D. Ge, L. Yang, Y. Li, J. Zhao, Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. J. Non-Cryst. Solids 355, 2610–2615 (2009)

    CAS  Google Scholar 

  57. 57.

    J.M. Allan, M.A. Mumin, J.A. Wood, W.Z. Xu, W. Wu, P.A. Charpentier, Silica aerogel–poly (ethylene-co-vinyl acetate) composite for transparent heat retention films. J. Polym. Sci. B 52, 927–935 (2014)

    CAS  Google Scholar 

  58. 58.

    A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4266 (2002)

    CAS  PubMed  Google Scholar 

  59. 59.

    J. Zhu, S. Wei, A. Yadav, Z. Guo, Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in situ stabilized carbon nanofibers. Polymer 51, 2643–2651 (2010)

    CAS  Google Scholar 

  60. 60.

    D. Xu, D. Gersappe, Structure formation in nanocomposite hydrogels. Soft Matter 13, 1853–1861 (2017)

    CAS  PubMed  Google Scholar 

  61. 61.

    R. Kotsilkova, D. Fragiadakis, P. Pissis, Reinforcement effect of carbon nanofillers in an epoxy resin system: rheology, molecular dynamics, and mechanical studies. J. Polym. Sci. B 43, 522–533 (2005)

    CAS  Google Scholar 

  62. 62.

    A.K. Yadav, S. Banerjee, R. Kumar, K.K. Kar, J. Ramkumar, K. Dasgupta, Mechanical analysis of nickel particle-coated carbon fiber-reinforced epoxy composites for advanced structural applications. ACS Appl. Nano Mater. 1(8), 4332–4339 (2018)

    CAS  Google Scholar 

  63. 63.

    C.-F. Cheng, H.-H. Cheng, P.-W. Cheng, Y.-J. Lee, Effect of reactive channel functional groups and nanoporosity of nanoscale mesoporous silica on properties of polyimide composite. Macromolecules 39, 7583–7590 (2006)

    CAS  Google Scholar 

  64. 64.

    I. Park, H.-G. Peng, D.W. Gidley, S. Xue, T.J. Pinnavaia, Epoxy–silica mesocomposites with enhanced tensile properties and oxygen permeability. Chem. Mater. 18, 650–656 (2006)

    CAS  Google Scholar 

  65. 65.

    J. Lin, X. Wang, Preparation, microstructure, and properties of novel low-κ brominated epoxy/mesoporous silica composites. Eur. Polym. J. 44, 1414–1427 (2008)

    CAS  Google Scholar 

  66. 66.

    N. Mazlan, N. Termazi, S. Abdul Rashid, S. Rahmanian, Investigations on composite flexural behaviour with inclusion of CNT enhanced silica aerogel in epoxy nanocomposites, in Applied Mechanics and Materials, pp. 179–182 (2015)

  67. 67.

    J. Jiao, L. Wang, P. Lv, Y. Cui, J. Miao, Improved dielectric and mechanical properties of silica/epoxy resin nanocomposites prepared with a novel organic–inorganic hybrid mesoporous silica: POSS–MPS. Mater. Lett. 129, 16–19 (2014)

    CAS  Google Scholar 

  68. 68.

    S.K. Singh, A. Kumar, A. Jain, Improving tensile and flexural properties of SiO2–epoxy polymer nanocomposite. Mater. Today 5, 6339–6344 (2018)

    Google Scholar 

  69. 69.

    Z. S. Alsagayar, A. R. Rahmat, and A. Arsad, Tensile and flexural properties of montmorillonite nanoclay reinforced epoxy resin composites, in Advanced Materials Research, pp. 373–376 (2015)

  70. 70.

    M. Naeimirad, A. Zadhoush, R.E. Neisiany, S. Ramakrishna, S. Salimian, A.A. Leal, Influence of microfluidic flow rates on the propagation of nano/microcracks in liquid core and hollow fibers. Theor. Appl. Fract. Mech. 96, 83–89 (2018)

    CAS  Google Scholar 

  71. 71.

    Q. Zhao, S. Hoa, Toughening mechanism of epoxy resins with micro/nano particles. J. Compos. Mater. 41, 201–219 (2007)

    CAS  Google Scholar 

  72. 72.

    J. Parameswaranpillai, S.K. Sidhardhan, S. Jose, N. Hameed, N.V. Salim, S. Siengchin et al., Miscibility, phase morphology, thermomechanical, viscoelastic and surface properties of poly (ε-caprolactone) modified epoxy systems: effect of curing agents. Ind. Eng. Chem. Res. 55, 10055–10064 (2016)

    CAS  Google Scholar 

  73. 73.

    I. Lázár, H.F. Bereczki, S. Manó, L. Daróczi, G. Deák, I. Fábián et al., Synthesis and study of new functionalized silica aerogel poly (methyl methacrylate) composites for biomedical use. Polym. Compos. 36, 348–358 (2015)

    Google Scholar 

  74. 74.

    M. Run, S. Wu, D.Y. Zhang, G. Wu, A polymer/mesoporous molecular sieve composite: preparation, structure and properties. Mater. Chem. Phys. 105, 341–347 (2007)

    CAS  Google Scholar 

  75. 75.

    Y. Li, L. Dong, X. Zhang, Y. Lu, W. Fang, Y. Yang, Preparation of carbon nanotubes/epoxy composites using novel aerogel substrates. Mater. Lett. 160, 432–435 (2015)

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Salimian.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salimian, S., Zadhoush, A. Water-glass based silica aerogel: unique nanostructured filler for epoxy nanocomposites. J Porous Mater 26, 1755–1765 (2019). https://doi.org/10.1007/s10934-019-00757-3

Download citation


  • Silica aerogel
  • Polymer nanocomposite
  • Rheology
  • Interface