Nickel catalysts supported on La2O3-modified KIT-6 for the methane dry reforming reaction

Abstract

Nickel catalysts are vulnerable to suffering from carbon deposition and metal sintering in the methane dry reforming process under high temperature. Based on these problems, in this paper, La2O3–KIT-6 materials with different La2O3 contents were designed and prepared in order to take advantage of the basic sites of La2O3 and rich mesoporous structure of KIT-6, and then nickel catalysts supported on La2O3–KIT-6 materials were synthesized. In contrast, the Ni/KIT-6 catalyst was also prepared by the same method. XRD, TEM, SEM, physisorption of N2, XPS, H2-TPR, Raman, and TG were used for fresh and spent catalysts characterization in this work. The catalytic performance of these Ni/La2O3–KIT-6 catalysts was tested under high temperature methane dry reforming reaction. Our work showed that the La2O3-modified catalysts showed reasonably superior catalytic activity and high long term stability compared with the nickel catalyst supported on KIT-6 without modification of La2O3. The high dispersion of nickel nanoparticles on La2O3–KIT-6 as well as the basic property of La2O3 were both helpful to the resistance towards carbon deposition, and the interaction between Ni nanoparticles and support material in Ni/La2O3–KIT-6 was helpful to the resistance towards nickel sintering on account of the special physicochemical properties of La2O3.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    N. Wang, X. Yu, Y. Wang, W. Chu, M. Liu, Catal. Today 212, 98 (2013)

    CAS  Google Scholar 

  2. 2.

    H. Zhang, Y. Dong, W. Fang, Y. Lian, Chin. J. Catal. 34, 330 (2013)

    Google Scholar 

  3. 3.

    A.W. Budiman, S.H. Song, T.S. Chang, C.H. Shin, M.J. Choi, Catal. Surv. Asia 16, 183 (2012)

    CAS  Google Scholar 

  4. 4.

    G.S. Gallego, F. Mondragón, J.M. Tatibouët, J. Barrault, C. Batiot-Dupeyrat, Catal. Today 200, 133–135 (2008)

    Google Scholar 

  5. 5.

    L. Foppa, M.C. Silaghi, K. Larmier, A. Comas-Vives, J. Catal. 343, 196 (2016)

    CAS  Google Scholar 

  6. 6.

    N. Pegios, V. Bliznuk, S.A. Theofanidis, V.V. Galvita, G.B. Marin, R. Palkovits, K. Simeonov, Appl. Surf. Sci. 452, 239 (2018)

    CAS  Google Scholar 

  7. 7.

    L. Li, Z. Yang, D. Hu, J. Shan, Y.H. Zhang, J.L. Li, Catal. Lett. 148, 564 (2018)

    CAS  Google Scholar 

  8. 8.

    J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong, F. Su, RSC Adv. 5, 22759 (2015)

    CAS  Google Scholar 

  9. 9.

    L.A. Schulz, L.C.S. Kahle, K.H. Delgado, S.A. Schunk, A. Jentys, O. Deutschmann, J.A. Lercher, Appl. Catal. A 504, 599 (2015)

    CAS  Google Scholar 

  10. 10.

    L. Zhang, Q. Zhang, Y. Liu, Y. Zhang, Appl. Surf. Sci. 389, 25 (2016)

    CAS  Google Scholar 

  11. 11.

    C. Egawa, J. Catal. 358, 35 (2018)

    CAS  Google Scholar 

  12. 12.

    L. Yue, J. Li, C. Chen, X. Fu, Y. Gong, X. Xia, J. Hou, C. Xiao, X. Chen, L. Zhao, G. Ran, H. Wang, Fuel 218, 335 (2018)

    CAS  Google Scholar 

  13. 13.

    P.J.S. Prieto, A.P. Ferreira, P.S. Haddad, D. Zanchet, J.M.C. Bueno, J. Catal. 276, 351 (2010)

    CAS  Google Scholar 

  14. 14.

    D. Pakhare, J. Spivey, Chem. Soc. Rev. 43, 7813 (2014)

    CAS  PubMed  Google Scholar 

  15. 15.

    C. Wang, N. Sun, N. Zhao, W. Wei, J. Zhang, T. Zhao, Y. Sun, C. Sun, H. Liu, C.E. Snape, ChemCatChem 6, 640 (2014)

    CAS  Google Scholar 

  16. 16.

    J. Niu, X. Du, J. Ran, R. Wang, Appl. Surf. Sci. 376, 79 (2016)

    CAS  Google Scholar 

  17. 17.

    N. Sun, X. Wen, F. Wang, W. Peng, N. Zhao, F. Xiao, W. Wei, Y. Sun, J. Kang, Appl. Surf. Sci. 257, 9169 (2011)

    CAS  Google Scholar 

  18. 18.

    S. Dama, S.R. Ghodke, R. Bobade, H.R. Gurav, S. Chilukuri, Appl. Catal. B 224, 146 (2018)

    CAS  Google Scholar 

  19. 19.

    C.J. Liu, J. Ye, J. Jiang, Y. Pan, ChemCatChem 3, 529 (2011)

    CAS  Google Scholar 

  20. 20.

    Z. Hou, J. Gao, J. Guo, D. Liang, H. Lou, X. Zheng, J. Catal. 250, 331 (2007)

    CAS  Google Scholar 

  21. 21.

    Y. Yan, Y. Dai, Y. Yang, A.A. Lapkin, Appl. Catal. B 237, 504 (2018)

    CAS  Google Scholar 

  22. 22.

    G. Jin, F. Gu, Q. Liu, X. Wang, L. Jia, G. Xu, Z. Zhong, F. Su, RSC Adv. 6, 9631 (2016)

    CAS  Google Scholar 

  23. 23.

    E.C. Lovell, A. Fuller, J. Scott, R. Amal, Appl. Catal. B 199, 155 (2016)

    CAS  Google Scholar 

  24. 24.

    J. Gao, C. Jia, M. Zhang, F. Gu, G. Xu, F. Su, Catal. Sci. Technol. 3, 2009 (2013)

    CAS  Google Scholar 

  25. 25.

    J.W. Han, J.S. Park, M.S. Choi, H. Lee, Appl. Catal. B 203, 625 (2017)

    CAS  Google Scholar 

  26. 26.

    R.K. Singha, A. Yadav, A. Shukla, M. Kumar, R. Bal, Catal. Commun. 92, 19 (2017)

    CAS  Google Scholar 

  27. 27.

    F. Zhang, Z. Liu, S. Zhang, N. Akter, R.M. Palomino, D. Vovchok, I. Orozco, D. Salazar, J.A. Rodriguez, J. Llorca, J. Lee, D. Kim, W. Xu, A.I. Frenkel, Y. Li, T. Kim, S.D. Senanayake, ACS Catal. 8, 3550 (2018)

    CAS  Google Scholar 

  28. 28.

    S. Tada, D. Minori, F. Otsuka, R. Kikuchi, K. Osada, K. Akiyama, S. Satokawa, Fuel 129, 219 (2014)

    CAS  Google Scholar 

  29. 29.

    W.Y. Teoh, D.E. Doronkin, G.K. Beh, J.A.H. Dreyer, J.D. Grunwaldt, J. Catal. 326, 182 (2015)

    CAS  Google Scholar 

  30. 30.

    Q. Duan, J. Wang, C. Ding, H. Ding, S. Guo, Y. Jia, P. Liu, K. Zhang, Fuel 193, 112 (2017)

    CAS  Google Scholar 

  31. 31.

    S. Li, H. Tang, D. Gong, Z. Ma, Y. Liu, Catal. Today 297, 298 (2017)

    CAS  Google Scholar 

  32. 32.

    N. Wang, Z. Xu, J. Deng, K. Shen, X. Yu, W. Qian, W. Chu, F. Wei, ChemCatChem 6, 1470 (2014)

    CAS  Google Scholar 

  33. 33.

    L. Li, M. Huo, Y. Zhang, J. Li, J. Porous Mater. 24, 1613 (2017)

    CAS  Google Scholar 

  34. 34.

    X. Chen, J. Jin, G. Sha, C. Li, B. Zhang, D. Su, C.T. Williams, C. Liang, Catal. Sci. Technol. 4, 53 (2014)

    CAS  Google Scholar 

  35. 35.

    X. Li, D. Li, H. Tian, L. Zeng, Z.J. Zhao, J. Gong, Appl. Catal. B 202, 683 (2017)

    CAS  Google Scholar 

  36. 36.

    M.M. Nair, S. Kaliaguine, F. Kleitz, ACS Catal. 4, 3837 (2014)

    CAS  Google Scholar 

  37. 37.

    X. Verykios, Int. J. Hydrog. Energy 28, 1045 (2003)

    CAS  Google Scholar 

  38. 38.

    H. Song, J. Yang, J. Zhao, L. Chou, Chin. J. Catal. 31, 21 (2010)

    CAS  Google Scholar 

  39. 39.

    S.Q. Chen, Y.D. Li, Y. Liu, X. Bai, Int. J. Hydrog. Energy 36, 5849 (2011)

    CAS  Google Scholar 

  40. 40.

    W.M. Mullins, Surf. Sci. 262, L144 (1992)

    CAS  Google Scholar 

  41. 41.

    P. Li, F. Yu, N. Altaf, M. Zhu, J. Li, B. Dai, Q. Wang, Materials 11, 221 (2018)

    PubMed Central  Google Scholar 

Download references

Acknowledgement

Financial supports of this work by the National Natural Science Foundation of China (Grant No. 21403304) are greatly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Conflict of interest

The authors of this paper declare that they have no conflict of interest.

Ethical approval

The experiments of this paper comply with the current laws of China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Shan, J., Li, L. et al. Nickel catalysts supported on La2O3-modified KIT-6 for the methane dry reforming reaction. J Porous Mater 26, 1593–1606 (2019). https://doi.org/10.1007/s10934-019-00756-4

Download citation

Keywords

  • Methane dry reforming reaction
  • Nickel catalysts
  • La2O3
  • Catalytic activity
  • Catalytic stability