Role of the type of grafting solvent and its removal process on APTES functionalization onto SBA-15 silica for CO2 adsorption

Abstract

In this work, silica-based CO2 adsorbents were successfully prepared by the sol–gel method. These materials were chemically modified with 3-aminopropyltriethoxysilane (APTES) using the grafting technique. Two synthesis parameters were investigated in this study, namely the solvent used in the grafting step (toluene against ethanol) and the process employed for removing the solvent (filtration against evaporation). The influence of these parameters on pore structure, surface chemistry and CO2 capture performance were evaluated and discussed on the basis of a series of experimental tests, including FTIR, TG-MS, nitrogen adsorption tests, XRD, TEM and CO2 adsorption. The use of ethanol led to samples with a NH2 concentration of about 1.20 ± 0.05 mmol g−1. On the other hand, samples obtained using toluene showed amine concentrations two times higher than the specimens prepared with ethanol. Samples obtained by evaporation exhibited blocked pores and a low CO2 adsorption capacity when compared to those obtained by filtration. The sample prepared using toluene as the solvent and a filtration step displayed a CO2 adsorption capacity as high as 6.3 wt% at 30 °C and 1 bar.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Massachussets Institute of Technology, The Future of Natural Gas: An Interdisciplinary MIT Study (Massachussets Institute of Technology, Cambridge, 2011)

    Google Scholar 

  2. 2.

    X. Liu, L. Zhou, X. Fu, Y. Sun, W. Su, Y. Zhou, Chem. Eng. Sci. 62, 1101 (2007)

    CAS  Google Scholar 

  3. 3.

    R. Kishor, A.K. Ghoshal, Chem. Eng. J. 262, 882 (2015)

    CAS  Google Scholar 

  4. 4.

    Y. Belmabkhout, R. Serna-guerrero, A. Sayari, Adsorpt. J. Int. Adsorpt. Soc. 49, 359 (2010)

    CAS  Google Scholar 

  5. 5.

    Y. Belmabkhout, G. De Weireld, A. Sayari, Langmuir 25, 13275 (2009)

    CAS  PubMed  Google Scholar 

  6. 6.

    Y.G. Ko, S.S. Shin, U.S. Choi, J. Colloid Interface Sci. 361, 594 (2011)

    CAS  PubMed  Google Scholar 

  7. 7.

    J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye, Y. Shi, Microporous Mesoporous Mater. 116, 394 (2008)

    CAS  Google Scholar 

  8. 8.

    L. Mafra, T. Čendak, S. Schneider, P.V. Wiper, J. Pires, J.R.B. Gomes, M.L. Pinto, Chem. Eng. J. 336, 612 (2018)

    CAS  Google Scholar 

  9. 9.

    C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air. Qual. Res. 12, 745 (2012)

    CAS  Google Scholar 

  10. 10.

    E.F. Vansant, P.V. Voort, K.C. Vrancken (eds.), Characterization and chemical modification of the silica surface (Elsevier, Amsterdam, 1995), pp. 193–297

    Google Scholar 

  11. 11.

    A.C.C. Chang, S.S.C. Chuang, M. Gray, Y. Soong, Energy Fuels 17, 468–473 (2003)

    CAS  Google Scholar 

  12. 12.

    A. Simon, T. Cohen-Bouhacina, M.C. Port, J.P. Aim, J. Colloid Interface Sci. 283, 278 (2002)

    Google Scholar 

  13. 13.

    P. Shah, N. Sridevi, A. Prabhune, V. Ramaswamy, Microporous Mesoporous Mater. 116, 157 (2008)

    CAS  Google Scholar 

  14. 14.

    M. Chaimberg, Y. Cohen, J. Colloid Interface Sci. 134, 576 (1990)

    CAS  Google Scholar 

  15. 15.

    F. Cuoq, A. Masion, J. Labille, J. Rose, F. Ziarelli, B. Prelot, J. Bottero, Appl. Surf. Sci. 266, 155 (2013)

    CAS  Google Scholar 

  16. 16.

    W.J.D. Ng, Z. Zhong, J. Luo, A. Borgna, Int. J. Hydrogen Energy 35, 12724 (2010)

    Google Scholar 

  17. 17.

    H. He, J. Duchet, J. Galy, J. Gerard, J. Colloid Interface Sci. 288, 171 (2005)

    CAS  PubMed  Google Scholar 

  18. 18.

    A. Krysztafkiewicz, T. Jesionowski, S. Binkowski, Colloids Surfaces A Physicochem. Eng. Asp. 173, 73 (2000)

    CAS  Google Scholar 

  19. 19.

    Z. Bahrami, A. Badiei, F. Atyabi, Chem. Eng. Res. Des. 2, 1296 (2013)

    Google Scholar 

  20. 20.

    M. Moritz, M. Łaniecki, Appl. Surf. Sci. 258, 7523 (2012)

    CAS  Google Scholar 

  21. 21.

    V. Hernández-Morales, R. Nava, Y.J. Acosta-Silva, S.A. MacÍas-Sánchez, J.J. Pérez-Bueno, B. Pawelec, Microporous Mesoporous Mater. 160, 133 (2012)

    Google Scholar 

  22. 22.

    A.Z. Abdullah, N.S. Sulaiman, A.H. Kamaruddin, Biochem. Eng. J. 44, 263 (2009)

    CAS  Google Scholar 

  23. 23.

    P.T.B. Nguyen, J. Lee, W.G. Shim, H. Moon, Microporous Mesoporous Mater. 110, 560 (2008)

    CAS  Google Scholar 

  24. 24.

    S. Shylesh, A.P. Singh, J. Catal. 244, 52 (2006)

    CAS  Google Scholar 

  25. 25.

    Q. Xue, Y. Liu, J. Ind. Eng. Chem. 18, 169 (2012)

    CAS  Google Scholar 

  26. 26.

    X. Zhang, H. Qin, X. Zheng, W. Wu, Mater. Res. Bull. 48, 3981 (2013)

    CAS  Google Scholar 

  27. 27.

    B.M. Yue, B.L. Sun, Z.J. Wang, Y. Wang, Q. Yu, J.H. Zhu, Microporous Mesoporous Mater. 114, 74 (2008)

    CAS  Google Scholar 

  28. 28.

    A. Zhao, A. Samanta, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 52, 6480 (2013)

    CAS  Google Scholar 

  29. 29.

    J. Kim, R.J. Desch, S.W. Thiel, V.V. Guliants, N.G. Pinto, J. Chromatogr. A 1218, 7796 (2011)

    CAS  PubMed  Google Scholar 

  30. 30.

    V. Meynen, P. Cool, E.F. Vansant, Microporous Mesoporous Mater. 125, 170 (2009)

    CAS  Google Scholar 

  31. 31.

    H.M. Alsyouri, M.A. Abu-Daabes, A. Alassali, J.Y. Lin, Nanoscale Res. Lett. 8, 484 (2013)

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    P.F. Fulvio, S. Pikus, M. Jaroniec, J. Mater. Chem. 15, 5049 (2005)

    CAS  Google Scholar 

  33. 33.

    Y. Liu, T.J. Pinnavaia, J. Mater. Chem. 12, 3179 (2002)

    CAS  Google Scholar 

  34. 34.

    A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem. 27, 73 (2002)

    Google Scholar 

  35. 35.

    K. Cassiers, T. Linssen, M. Mathieu, M. Benjelloun, K. Schrijnemakers, P. Van Der Voort, P. Cool, E.F. Vansant, Chem. Mater. 14, 2317 (2002)

    CAS  Google Scholar 

  36. 36.

    C.P. Tripp, M.L. Hair, Langmuir 7, 923 (1991)

    CAS  Google Scholar 

  37. 37.

    J. Román, S. Padilla, M. Vallet-Regí, Chem. Mater. 15, 798 (2003)

    Google Scholar 

  38. 38.

    B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, New York, 1998)

    Google Scholar 

  39. 39.

    A. del Campo, T. Sen, J.-P. Lellouche, I.J. Bruce, J. Magn. Magn. Mater. 293, 33 (2005)

    Google Scholar 

  40. 40.

    S. Xie, M. Gan, L. Ma, Z. Li, J. Yan, H. Yin, X. Shen, F. Xu, J. Zheng, J. Zhang, J. Hu, Electrochim. Acta 120, 408 (2014)

    CAS  Google Scholar 

  41. 41.

    R.M. Almeida, C.G. Pantano, J. Appl. Phys. 68, 4225 (1990)

    CAS  Google Scholar 

  42. 42.

    V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, P.L. Llewellyn, Microporous Mesoporous Mater. 116, 358 (2008)

    CAS  Google Scholar 

  43. 43.

    L. Wang, L. Ma, A. Wang, Q. Liu, T. Zhang, Chinese. J. Catal. 28, 805 (2007)

    CAS  Google Scholar 

  44. 44.

    F.Y. Chang, K.J. Chao, H.H. Cheng, C.S. Tan, Sep. Purif. Technol. 70, 87 (2009)

    CAS  Google Scholar 

  45. 45.

    E. Da’na, A. Sayari, Chem. Eng. J. 166, 445 (2011)

    Google Scholar 

  46. 46.

    J.M. Rosenholm, M. Lindén, Chem. Mater. 19, 5023 (2007)

    CAS  Google Scholar 

  47. 47.

    V. Zelenák, M. Badanicová, D. Halamová, J. Cejka, A. Zukal, N. Murafa, G. Goerigk, Chem. Eng. J. 144, 336 (2008)

    Google Scholar 

  48. 48.

    S. Saravanamurugan, D. Han, J. Koo, S. Park, Catal. Commun. 9, 158 (2008)

    CAS  Google Scholar 

  49. 49.

    Y. Li, N. Sun, L. Li, N. Zhao, F. Xiao, W. Wei, Y. Sun, W. Huang, Materials (Basel). 6, 981 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    S.A. Didas, M.A. Sakwa-novak, G.S. Foo, C. Sievers, C.W. Jones, J. Phys. Chem. Lett. Scheme 5, 4194–4200 (2014)

    CAS  Google Scholar 

  51. 51.

    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

    CAS  Google Scholar 

  52. 52.

    J. Liu, R. Lin, Powder Technol. 241, 188 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from Petrobras, Equinor, and ANP (National Agency of Petroleum, Natural Gas and Biofuel). We also thank the technical support of UFMG Microscopy Center in the TEM tests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jéssica de O. N. Ribeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de O. N. Ribeiro, J., Nunes, E.H.M., Vasconcelos, D.C.L. et al. Role of the type of grafting solvent and its removal process on APTES functionalization onto SBA-15 silica for CO2 adsorption. J Porous Mater 26, 1581–1591 (2019). https://doi.org/10.1007/s10934-019-00754-6

Download citation

Keywords

  • SBA-15
  • APTES
  • CO2 adsorption
  • Grafting