Skip to main content
Log in

Enhanced cracking of bulky hydrocarbons over hierarchical ZSM-5 materials: a comparative study

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A comparative study of hierarchical ZSM-5 materials including nanosized ZSM-5 (Nano-ZSM-5), nanosized ZSM-5/SBA-15 composite (Com-ZSM-5) and mesoporous ZSM-5 (Meso-ZSM-5) for the enhanced cracking of bulky hydrocarbons is reported. The studied materials were thoroughly characterized by XRD, SEM, TEM, N2-sorption, AAS, ICP-AES, NH3-TPD, FTIR of adsorbed pyridine before being tested in the cracking of 1,3,5 tri-isopropyl-benzene (TIPB) as a representative of bulky hydrocarbons. It was found that all synthesized hierarchical ZSM-5 materials exhibit the preservation of intrinsic, strong Brønsted acidity of ZSM-5 along with the enlarged external/mesoporous surface. The catalytic test results show that these hierarchical ZSM-5 materials indeed promote successive cracking reactions, leading to the enhanced TIPB conversion and selectivity to the deep cracking products, i.e. cumene and benzene compared to those of bulk, commercial ZSM-5. However, the development of mesoporosity by reducing the crystal size of ZSM-5 appears limited (Smeso = 134 m2 g−1). As a result, Nano-ZSM-5 affords only the moderate TIPB conversion and selectivity to deep cracking products (ca. 70% and ca. 20% respectively). Remarkably, the introduction of either intercrystalline mesopores by dispersion of Nano-ZSM-5 in the mesoporous SBA-15 analog matrix (Com-ZSM-5) or intracrystalline mesopores by the alkaline-acid treatments (Meso-ZSM-5) significantly improves the external/mesoporous surface (Smeso = 233–297 m2 g−1), giving rise to both the high TIPB conversion and selectivity to the deep cracking products (ca. 90% and ca. 25% respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.T.C. Vogt, B.M. Weckhuysen, Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. N.V. Choudary, B.L. Newalkar, Use of zeolites in petroleum refining and petrochemical processes: recent advances. J Porous Mater. 18, 685–692 (2011)

    Article  Google Scholar 

  3. J. Pérez-Ramírez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530–2542 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. K. Möller, T. Bein, Mesoporosity: a new dimension for zeolites. Chem. Soc. Rev. 42, 3689–3707 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. V. Valtchev, L. Tosheva, Porous nanosized particles: preparation, properties, and applications. Chem. Rev. 8, 6734–6760 (2013)

    Article  CAS  Google Scholar 

  6. J. Čejka, S. Mintova, Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. Sci. Eng. 49, 457–509 (2007)

    Article  CAS  Google Scholar 

  7. W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353–3376 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. X.H. Vu, U. Armbruster, A. Martin, Micro/mesoporous zeolitic composites: recent developments in synthesis and catalytic applications. Catalysts 6, 183 (2016)

    Article  CAS  Google Scholar 

  9. D. Verboekend, J. Pérez-Ramírez, Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 1, 879–890 (2011)

    Article  CAS  Google Scholar 

  10. P. Morales-Pacheco, J.M. Domínguez, L. Bucio, F. Alvarez, U. Sedran, M. Falco, Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catal. Today 166, 25–38 (2011)

    Article  CAS  Google Scholar 

  11. H. Awala, J.P. Gilson, R. Retoux, P. Boullay, J.M. Goupil, V. Valtchev, S. Mintova, Template-free nanosized faujasite-type zeolites. Nat. Mater. 14, 447–451 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, G. Li, Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance. J. Colloid Interface Sci. 361, 521–526 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. A. Petushkov, S. Yoon, S.C. Larsen, Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity. Micropor. Mesopor. Mater. 137, 92–100 (2011)

    Article  CAS  Google Scholar 

  14. X.H. Vu, U. Bentrup, M. Hunger, R. Kraehnert, U. Armbruster, A. Martin, Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst. J. Mater. Sci. 49, 5676–5689 (2014)

    Article  CAS  Google Scholar 

  15. X.H. Vu, M. Hunger, U. Armbruster, A. Martin, Influence of initial Si/Al ratios on the structural, acidic and catalytic properties of nanosized-ZSM-5/SBA-15 analog composites prepared from ZSM-5 precursors. J porous Mater. (2017). https://doi.org/10.1007/s10934-017-0514-y

    Article  Google Scholar 

  16. M.S. Aghakhani, A.A. Khodadadi, Sh Najafi, Y. Mortazavi, Enhanced triisopropylbenzene cracking and suppressed coking on tailored composite of Y-zeolite/amorphous silica–alumina catalyst. J. Ind. Eng. Chem. 20, 3037–3045 (2014)

    Article  CAS  Google Scholar 

  17. A. Ishihara, K. Kimura, A. Owaki, K. Inui, T. Hashimoto, H. Nasu, Catalytic cracking of VGO by hierarchical ZSM-5 zeolite containing mesoporous silica–aluminas using a Curie point pyrolyzer. Catal. Commun. 28, 163–167 (2012)

    Article  CAS  Google Scholar 

  18. K.A. Tarach, K. Góra-Marek, J. Martinez-Triguero, I. Melián-Cabrera, Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catal. Sci. Technol. 7, 858–873 (2017)

    Article  CAS  Google Scholar 

  19. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, M. Matsukata, Alkali-treatment technique: new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal. A 219, 33–43 (2001)

    Article  CAS  Google Scholar 

  20. X.H. Vu, T.T. Truong, U. Armbruster, A. Martin, Influence of post-synthetic treatments of aluminum-rich ZSM-5 on the catalytic cracking of bulky hydrocarbons at low temperature. Reac Kinet Mech Cat (2017). https://doi.org/10.1007/s11144-017-1317-5

    Article  Google Scholar 

  21. G. Gil, L. Mokrzycki, B. Sulikowski, Z. Olejniczak, S. Walas, Desilication of ZSM-5 and ZSM-12 zeolites: impact on textural, acidic and catalytic properties. Catal. Today 152, 24–32 (2010)

    Article  CAS  Google Scholar 

  22. C. Li, Y. Wang, Y. Guo, X. Liu, Y. Guo, Z. Zhang, Y. Wang, G. Lu, Synthesis of highly ordered, extremely hydrothermal stable SBA-15/Al-SBA-15 under the assistance of sodium chloride. Chem. Mater. 19, 173–178 (2006)

    Article  CAS  Google Scholar 

  23. P. Losch, T.C. Hoff, J.F. Kolb, C. Bernardon, J.P. Tessonnier, B. Louis, Mesoporous ZSM-5 zeolites in acid catalysis: top-down vs. bottom-up approach. Catalysts 7, 225 (2017)

    Article  CAS  Google Scholar 

  24. C. Moterra, G. Magnacca, V. Bolis, On the critical use of molar absorption coefficients for adsorbed species: the methanol/silica system. Catal. Today 70, 43–58 (2001)

    Article  Google Scholar 

  25. S. Al-Khattaf, H. de Lasa, The role of diffusion in alkyl-benzenes catalytic cracking. Appl. Catal. A 226, 139–153 (2002)

    Article  CAS  Google Scholar 

  26. S. Al-Khattaf, J.A. Atias, K. Jarosch, H. de Lasa, Diffusion and catalytic cracking of 1,3,5 triisopropylbenzene in FCC catalysts. Chem. Eng. Sci. 57, 4909–4920 (2002)

    Article  CAS  Google Scholar 

  27. L. Zhao, B. Shen, J. Gao, C. Xu, Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion. J. Catal. 258, 228–234 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. M.-M. Pohl for recording TEM images; R. Kraehnert for SEM measurements; Dr. U. Bentrup for IR of adsorbed pyridine studies; Mr. R. Eckelt for N2-adsorption and desorption measurements; Dr. A. Martin is acknowledged for his valuable advice on the experimental design and result discussion. H. X. Vu thanks Ton Duc Thang University and Leibniz-Institut für Katalyse for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Hoan Vu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, X.H., Truong, T.T. & Armbruster, U. Enhanced cracking of bulky hydrocarbons over hierarchical ZSM-5 materials: a comparative study. J Porous Mater 26, 175–184 (2019). https://doi.org/10.1007/s10934-018-0633-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0633-0

Keywords

Navigation