Skip to main content
Log in

Three-dimensional ordered macroporous HPW/titania–alumina catalysts for catalytic oxidative desulfurization of fuels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A series of three-dimensionally ordered macroporous (3DOM) alumina doped phosphotungstic acid (HPW)/TiO2 materials was synthesized successfully through sol–gel method with highly ordered 3D polystyrene monoliths as macroporous template. The characterization results of scanning electron microscope and transmission electron microscopy upheld the existence of periodically arranged macroporous structure. The infrared spectroscopy and powder X-ray diffraction results confirmed the homogeneous distribution of Keggin-type HPW on Al2O3–TiO2 matrix. Furthermore, the scanning electron microscopy-energy dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectroscopy, and inductively coupled plasma spectrometer measurements proved the introduction of alumina element on the TiO2 framework. NH3 temperature-programmed desorption (NH3-TPD) and pyridine-IR investigation characterized the effects of alumina modification on the surface acidity and acidic sites of catalysts. The 3DOM alumina doped HPW/TiO2 nanocomposites were applied in the catalytic oxidation desulfurization process. The alumina doped HPW/TiO2 catalyst showed superior catalytic oxidation desulfurization performance than corresponding 3DOM HPW/TiO2 catalyst, mesoporpus alumina doped HPW/TiO2, and microporous alumina doped HPW/TiO2. 99.7% of benzothiophene (DBT) in the model fuel could be removed within 1 h under optimized conditions. This should be attributed to the common influence of 3DOM structure and appropriate alumina addition amount on HPW/TiO2 composite, which further improved mass diffusion of DBT and its derivatives on the pore channel and the adsorption process on the catalyst surface, respectively. Moreover, the as-prepared catalyst displayed excellent cycle stability with a slight decrease in catalytic performance even after six runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.S. Mjalli, O.U. Ahmed, T. Alwahaibi, Y. Alwahaibi, I.M. Alnashef, Deep oxidative desulfurization of liquid fuels. Rev. Chem. Eng. 30(4), 337–378 (2014). https://doi.org/10.1515/revce-2014-0001

    Article  CAS  Google Scholar 

  2. B. Pawelec, R. Navarro, J. Camposmartin, J.G. Fierro, Towards near zero-sulfur liquid fuels: a perspective review. Catal. Sci. Technol. 1(1), 23–42 (2011). https://doi.org/10.1039/c0cy00049c

    Article  CAS  Google Scholar 

  3. H. Shang, H. Zhang, W. Du, Z. Liu, Development of microwave assisted oxidative desulfurization of petroleum oils: a review. J. Ind. Eng. Chem. 19(5), 1426–1432 (2013). https://doi.org/10.1016/j.jiec.2013.01.015

    Article  CAS  Google Scholar 

  4. N. Wu, B. Li, Z. Liu, C. Han, Synthesis of keggin-type lacunary 11-tungstophosphates encapsulated into mesoporous silica pillared in clay interlayer galleries and their catalytic performance in oxidative desulfurization. Catal. Commun. 46(5), 156–160 (2014). https://doi.org/10.1016/j.catcom.2013.12.013

    Article  CAS  Google Scholar 

  5. H.X. Qi, S.R. Zhai, W. Zhang, B. Zhai, Q.D. An, Recyclable hpw/peha/zrsba-15 toward efficient oxidative desulfurization of DBT with hydrogen peroxide. Catal. Commun. 72, 53–56 (2015). https://doi.org/10.1016/j.catcom.2015.09.008

    Article  CAS  Google Scholar 

  6. M. Seredych, J. Lison, U. Jans, T.J. Bandosz, Textural and chemical factors affecting adsorption capacity of activated carbon in highly efficient desulfurization of diesel fuel. Carbon 47(10), 2491–2500 (2009). https://doi.org/10.1016/j.carbon.2009.05.001

    Article  CAS  Google Scholar 

  7. R. Abro, A.A. Abdeltawab, S.S. Aldeyab, G. Yu, A.B. Qazi, S. Gao, A review of extractive desulfurization of fuel oils using ionic liquids. RSC Adv. 4(67), 35302–35317 (2014). https://doi.org/10.1039/c4ra03478c

    Article  CAS  Google Scholar 

  8. J.D. Holbrey, W.M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C. Hardacre, R.D. Rogers, Liquid clathrate formation in ionic liquid-aromatic mixtures. Chem. Commun. 4(4), 476–477 (2003). https://doi.org/10.1039/b212726a

    Article  CAS  Google Scholar 

  9. A. Bosmann, L. Datsevich, A. Jess, C.L. Schmitz, P. Wasserscheid, Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem. Commun. 23, 2494–2495 (2001). https://doi.org/10.1039/b108411a

    Article  CAS  Google Scholar 

  10. F.M. Collins, A.R. Lucy, C. Sharp, Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. J. Mol. Catal. A 117(1–3), 397–403 (1997). https://doi.org/10.1016/S1381-1169(96)00251-8

    Article  CAS  Google Scholar 

  11. M. Te, C. Fairbridge, Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems. Appl Catal A 219(1–2), 267–280 (2001). https://doi.org/10.1016/s0926-860x(01)00699-8

    Article  CAS  Google Scholar 

  12. J.L. García-Gutiérrez, G.C. Laredo, P. García-Gutiérrez, F. Jiménez-Cruz, Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide. Fuel 138, 118–125 (2014). https://doi.org/10.1016/j.fuel.2014.07.049

    Article  CAS  Google Scholar 

  13. D.J. Thompson, Y. Zhang, T. Ren, Polyoxometalate [γ-SiW10O34(H2O)2]4– on MCM-41 as catalysts for sulfide oxygenation with hydrogen peroxide. J. Mol. Catal. A 392(0), 188–193 (2014). https://doi.org/10.1016/j.molcata.2014.05.015

    Article  CAS  Google Scholar 

  14. P.D. Filippis, M. Scarsella, Oxidative desulfurization: oxidation reactivity of sulfur compounds in different organic matrixes. Energy Fuels 17(6), 1452–1455 (2003). https://doi.org/10.1021/ef0202539

    Article  CAS  Google Scholar 

  15. K. Leng, Y. Sun, X. Zhang, M. Yu, W. Xu, Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene. Fuel 174, 9–16 (2016). https://doi.org/10.1016/j.fuel.2016.01.070

    Article  CAS  Google Scholar 

  16. S. Du, X. Chen, Q. Sun, N. Wang, M. Jia, V. Valtchev, J. Yu, A non-chemically selective top-down approach towards the preparation of hierarchical ts-1 zeolites with improved oxidative desulfurization catalytic performance. Chem. Commun. 52(17), 3580–3583 (2016). https://doi.org/10.1039/c5cc10232d

    Article  CAS  Google Scholar 

  17. W. Trakarnpruk, K. Rujiraworawut, Oxidative desulfurization of gas oil by polyoxometalates catalysts. Fuel Process Technol. 90(3), 411–414 (2009). https://doi.org/10.1016/j.fuproc.2008.11.002

    Article  CAS  Google Scholar 

  18. J. Qiu, G. Wang, D. Zeng, Y. Tang, M. Wang, Y. Li, Oxidative desulfurization of diesel fuel using amphiphilic quaternary ammonium phosphomolybdate catalysts. Fuel Process Technol. 90(12), 1538–1542 (2009). https://doi.org/10.1016/j.fuproc.2009.08.001

    Article  CAS  Google Scholar 

  19. H. Yang, B. Jiang, Y. Sun, L. Hao, Z. Huang, L. Zhang, Synthesis and oxidative desulfurization of novel lactam-based brønsted-lewis acidic ionic liquids. Chem. Eng. J. 306, 131–138 (2016). https://doi.org/10.1016/j.cej.2016.07.044

    Article  CAS  Google Scholar 

  20. H. Azimzadeh, A. Akbari, M. Omidkhah, Catalytic oxidative desulfurization performance of immobilized NMP.FeCl3, ionic liquid on γ-Al2O3, support. Chem. Eng. J. 320, 189–200 (2017). https://doi.org/10.1016/j.cej.2017.03.027

    Article  CAS  Google Scholar 

  21. S. Xun, W. Zhu, Y. Chang, H. Li, M. Zhang, W. Jiang, D. Zheng, Y.J. Qin, H. Li, Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels. Chem. Eng. J. 288, 608–617 (2016). https://doi.org/10.1016/j.cej.2015.12.005

    Article  CAS  Google Scholar 

  22. W. Jiang, D. Zheng, S. Xun, Y. Qin, Q. Lu, W. Zhu, H. Li, Polyoxometalate-based ionic liquid supported on graphite carbon induced solvent-free ultra-deep oxidative desulfurization of model fuels. Fuel 190, 1–9 (2017). https://doi.org/10.1016/j.fuel.2016.11.024

    Article  CAS  Google Scholar 

  23. W. Li, G. Jin, H. Hu, J. Li, Y. Yang, Q. Chen, Phosphotungstic acid and WO3, incorporated TiO2, thin films as novel photoanodes in dye-sensitized solar cells. Electrochim. Acta 153, 499–507 (2015). https://doi.org/10.1016/j.electacta.2014.12.030

    Article  CAS  Google Scholar 

  24. X. Lu, X. Li, J. Qian, N. Miao, C. Yao, Z. Chen, Synthesis and characterization of CeO2/TiO2, nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. J. Alloys Compd. 661, 363–371 (2016). https://doi.org/10.1016/j.jallcom.2015.11.148

    Article  CAS  Google Scholar 

  25. L. Tang, G. Luo, M. Zhu, L. Kang, B. Dai, Preparation, characterization and catalytic performance of hpw-tud-1 catalyst on oxidative desulfurization. J. Ind. Eng. Chem. 19(2), 620–626 (2013). https://doi.org/10.1016/j.jiec.2012.09.015

    Article  CAS  Google Scholar 

  26. J. Qiu, G. Wang, Y. Zhang, D. Zeng, C. Yang, Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil. Fuel 147, 195–202 (2015). https://doi.org/10.1016/j.fuel.2015.01.064

    Article  CAS  Google Scholar 

  27. C. Shen, Y.J. Wang, J.H. Xu, G.S. Luo, Oxidative desulfurization of DBT with H2O2 catalysed by TiO2/porous glass. Green Chem. 18(18), 771–781 (2016). https://doi.org/10.1039/c5gc01653c

    Article  CAS  Google Scholar 

  28. J.L. García-Gutiérrez, G.A. Fuentes, M.E. Hernández-Terán, F. Murrieta, J. Navarrete, F. Jiménez-Cruz, Ultra-deep oxidative desulfurization of diesel fuel with H2O2, catalyzed under mild conditions by polymolybdates supported on Al2O3. Appl Catal A 305(1), 15–20 (2006). https://doi.org/10.1016/j.apcata.2006.01.027

    Article  CAS  Google Scholar 

  29. N.V. Maksimchuk, M.N. Timofeeva, M.S. Melgunov, A.N. Shmakov, Y.A. Chesalov, D.N. Dybtsev, V.P. Fedin, O.A. Kholdeeva, Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. J. Catal. 257(2), 315–323 (2008). https://doi.org/10.1016/j.jcat.2008.05.014

    Article  CAS  Google Scholar 

  30. J. Lei, L. Chen, P. Yang, X. Du, X. Yan, Oxidative desulfurization of diesel fuel by mesoporous phosphotungstic acid/SiO2: the effect of preparation methods on catalytic performance. J. Porous Mater. 20(5), 1379–1385 (2013). https://doi.org/10.1007/s10934-013-9724-0

    Article  CAS  Google Scholar 

  31. X.M. Yan, J.H. Lei, D. Liu, Y.C. Wu, W. Liu, Synthesis and catalytic properties of mesoporous phosphotungstic acid/SiO2 in a self-generated acidic environment by evaporation-induced self-assembly. Mater. Res. Bull. 42(11), 1905–1913 (2007). https://doi.org/10.1016/j.materresbull.2006.12.013

    Article  CAS  Google Scholar 

  32. D. Yue, J. Lei, Y. Peng, J. Li, X. Du, Hierarchical ordered meso/macroporous H3PW12O40/SiO2, catalysts with superior oxidative desulfurization activity. J. Porous Mater. (2017). https://doi.org/10.1007/s10934-017-0486-y

    Article  Google Scholar 

  33. D. Yue, Y. Peng, S. Zhou, J. Li, X. Du, J. Lei, Direct synthesis of ordered meso/macrostructured phosphotungstic acid/SiO2 by eisa method and its catalytic performance of fuel oil. Mater. Res. Bull. 97, 42–48 (2017). https://doi.org/10.1016/j.materresbull.2017.08.034

    Article  CAS  Google Scholar 

  34. P. Yang, S. Zhou, Y. Du, J. Li, J. Lei, Synthesis of ordered meso/macroporous H3PW12O40/SiO2 and its catalytic performance in oxidative desulfurization. RSC Adv. 6(6), 53860–53866 (2016). https://doi.org/10.1039/c6ra09154g

    Article  CAS  Google Scholar 

  35. L. Wang, B. Sun, F.H. Yang, R.T. Yang, Effects of aromatics on desulfurization of liquid fuel by π-complexation and carbon adsorbents. Chem. Eng. Sci. 73(73), 208–217 (2012). https://doi.org/10.1016/j.ces.2012.01.056

    Article  CAS  Google Scholar 

  36. A.H.M.S. Hussain, B.J. Tatarchuk, Adsorptive desulfurization of jet and diesel fuels using Ag/TiOx–Al2O3, and Ag/TiOx–SiO2, adsorbents. Fuel 107(9), 465–473 (2013). https://doi.org/10.1016/j.fuel.2012.11.030

    Article  CAS  Google Scholar 

  37. X.M. Yan, Z. Mei, P. Mei, Q. Yang, Self-assembled HPW/silica–alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil. J. Porous Mater. 21(5), 729–737 (2014). https://doi.org/10.1007/s10934-014-9819-2

    Article  CAS  Google Scholar 

  38. B.T. Holland, C.F. Blanford, T. Do, A. Stein, Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11(3), 795–805 (1999). https://doi.org/10.1002/chin.199921266

    Article  CAS  Google Scholar 

  39. R. Yang, L. Yang, T. Tao, F. Ma, M. Xu, Z. Zhang, Contrastive study of structure and photocatalytic performance with three-dimensionally ordered macroporous CuO–TiO2, and CuO/TiO2. Appl Surf Sci 288(1), 363–368 (2014). https://doi.org/10.1016/j.apsusc.2013.10.033

    Article  CAS  Google Scholar 

  40. J. Dhainaut, J.P. Dacquin, A.F. Lee, K. Wilson, Hierarchical macroporous–mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem. 12(2), 296–303 (2010). https://doi.org/10.1039/b919341c

    Article  CAS  Google Scholar 

  41. D. Liu, L.J. Xia, D. Qu, J.H. Lei, Y. Li, B.L. Su, Synthesis of hierarchical fiberlike ordered mesoporous carbons with excellent electrochemical capacitance performance by a strongly acidic aqueous cooperative assembly route. J. Mater. Chem. A 1(48), 15447–15458 (2013). https://doi.org/10.1039/c3ta13518g

    Article  CAS  Google Scholar 

  42. R. Camposeco, S. Castillo, I. Mejía-Centeno, J. Navarrete, N. Nava, Boosted surface acidity in TiO2 and Al2O3–TiO2 nanotubes as catalytic supports. Appl. Surf. Sci. 356, 115–123 (2015). https://doi.org/10.1016/j.apsusc.2015.08.026

    Article  CAS  Google Scholar 

  43. L. Yang, Y. Qi, X. Yuan, J. Shen, J. Kim, Direct synthesis, characterization and catalytic application of SBA-15 containing heteropolyacid H3PW12O40. J. Mol. Catal. A 229(1–2), 199–205 (2005). https://doi.org/10.1016/j.molcata.2004.11.024

    Article  CAS  Google Scholar 

  44. D.C. Duncan, R.C. Chambers, E. Hecht, C.L. Hill, Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of {PO4[WO(O2)2]4}3–. J. Am. Chem. Soc. 2(117), 681–691 (1995). https://doi.org/10.1021/ja00107a012

    Article  Google Scholar 

  45. J.E. Lee, S.M. Oh, D.W. Park, Synthesis of nano-sized Al doped TiO2 powders using thermal plasma. Thin Solid Films 457, 230–234 (2004)

    Article  CAS  Google Scholar 

  46. X.M. Yan, P. Mei, L. Xiong, L. Gao, Q. Yang, L. Gong, Mesoporous titania–silica–polyoxometalate nanocomposite materials for catalytic oxidation desulfurization of fuel oil. Catal. Sci. Technol. 3(8), 1985–1992 (2013). https://doi.org/10.1039/c3cy20732c

    Article  CAS  Google Scholar 

  47. J. Zhang, A. Wang, Y. Wang, H. Wang, J. Gui, Heterogeneous oxidative desulfurization of diesel oil by hydrogen peroxide: catalysis of an amphipathic hybrid material supported on SiO2. Chem. Eng. J. 245(245), 65–70 (2014). https://doi.org/10.1016/j.cej.2014.01.103

    Article  CAS  Google Scholar 

  48. C. Shen, Y.J. Wang, J.H. Xu, G.S. Luo, Synthesis of TS-1 on porous glass beads for catalytic oxidative desulfurization. Biochem. Eng. J. 259(10), 552–561 (2015). https://doi.org/10.1016/j.cej.2014.08.027

    Article  CAS  Google Scholar 

  49. X.M. Yan, P. Mei, J. Lei, Y. Mi, L. Xiong, L. Guo, Synthesis and characterization of mesoporous phosphotungstic acid/TiO2 nanocomposite as a novel oxidative desulfurization catalyst. J. Mol. Catal. A 304(1–2), 52–57 (2009). https://doi.org/10.1016/j.molcata.2009.01.023

    Article  CAS  Google Scholar 

  50. J. Zhang, A. Wang, X. Li, X. Ma, Oxidative desulfurization of dibenzothiophene and diesel over [Bmim](3)PMo12O40. J. Catal. 279(2), 269–275 (2011). https://doi.org/10.1016/j.jcat.2011.01.016

    Article  CAS  Google Scholar 

  51. S. Otsuki, T. Nonaka, N. Takashima, W. Qian, A. Ishihara, T. Imai, T. Kabe, Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuels 14(6), 1232–1239 (2000). https://doi.org/10.1021/ef000096i

    Article  CAS  Google Scholar 

  52. P. Yang, S. Zhou, Y. Du, J. Li, J. Lei, Self-assembled meso/macroporous phosphotungstic acid/TiO2 as an efficient catalyst for oxidative desulfurization of fuels. J. Porous Mater. 24, 531–539 (2017). https://doi.org/10.1007/s10934-016-0288-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant Nos. 21476177, 51502218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaheng Lei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 338 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, D., Lei, J., Lina, Z. et al. Three-dimensional ordered macroporous HPW/titania–alumina catalysts for catalytic oxidative desulfurization of fuels. J Porous Mater 26, 133–144 (2019). https://doi.org/10.1007/s10934-018-0627-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0627-y

Keywords

Navigation