Skip to main content
Log in

Facile fabrication of machinable low-density moisture-resistant silica aerogels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Low-density moisture-resistant silica aerogels with enhanced mechanical strength were obtained by combining with the aging of the teteraehoxysilane (TEOS)-based alcogels in the TEOS/ethanol solution and the modification in the hexamethyldisilazane (HMDS)/ethanol solution. This route introduced less organic impurities into as-prepared aerogels and their mechanical strength was also enhanced. The linear volume shrinkage of the modified wet gels reached as low as 3.6% during supercritical drying. Thus, the aerogels had appropriate mechanical strength to be adapted the requirements of applications with various shapes. Moreover, the densities of silica aerogels maintained stable after modification by high concentration HMDS, suggesting excellent moisture resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Ji, T. Yamazaki, J. Sun, Ż Górecka, N.-C. Huang, S. Hsu et al., Spongelike porous silica nanosheets: from “soft” molecular trapping to DNA delivery. ACS Appl. Mater. Interface 9, 4509–4518 (2017)

    Article  CAS  Google Scholar 

  2. E. Yamamoto, K. Kuroda, Colloidal mesoporous silica nanoparticles. Bull. Chem. Soc. Jpn. 89, 501–539 (2016)

    Article  CAS  Google Scholar 

  3. E. Yamamoto, K. Nagata, K. Onishi, C. Urata, A. Shimojima, H. Wada, S. Takeoka, K. Kuroda, Pore clogging of colloidal mesoporous silica nanoparticles for encapsulating guest species. Bull. Chem. Soc. Jpn. 90, 706–708 (2017)

    Article  CAS  Google Scholar 

  4. I. Saptiama, Y.V. Kaneti, H. Oveisi, Y. Suzuki, K. Tsuchiya, K. Takai, T. Sakae, S. Pradhan, M.S.A. Hossain, N. Fukumitsu, K. Ariga, Y. Yamauchi, Molybdenum adsorption properties of alumina-embedded mesoporous silica for medical radioisotope production. Bull. Chem. Soc. Jpn. 91, 195–200 (2018)

    Article  CAS  Google Scholar 

  5. N. Poonia, V. Lather, D. Pandita, Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer. Drug Discov. Today 23, 315–332 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. X. Du, X. Li, L. Xiong, X. Zhang, F. Kleitz, S.Z. Qiao, Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91, 90–127 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. X. Du, C. Zhao, Y. Luan, C. Zhang, M. Jaroniec, H. Huang, X. Zhang, S.-Z. Qiao, Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability. J. Mater. Chem. A 5, 21560–21569 (2017)

    Article  CAS  Google Scholar 

  8. X. Du, S.Z. Qiao, Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications. Small 11, 392–413 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. H. Maleki, L. Durães, A. Portugal, An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids 385, 55–74 (2014)

    Article  CAS  Google Scholar 

  10. M.S. Douglas, A. Maskara, U. Boes, Aerogel-based thermal insulation. J. Non-Cryst. Solids 225, 254–259 (1998)

    Article  Google Scholar 

  11. Q.F. Xu, H.B. Ren, J.Y. Zhu et al., Facile fabrication of graphite-doped silica aerogels with ultralow thermal conductivity by precise control. J. Non-Cryst. Solids 469, 14–18 (2017)

    Article  CAS  Google Scholar 

  12. H.B. Ren, J.Y. Zhu, Y.T. Bi et al., One-step fabrication of transparent hydrophobic silica aerogels via in situ surface modification in drying process. J. Sol-Gel Sci. Technol. 80, 635–641 (2016)

    Article  CAS  Google Scholar 

  13. R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: a state-of-the-art review. Energy Build. 43, 761–769 (2011)

    Article  Google Scholar 

  14. S. Zhao, Z. Zhang, G. Sèbe et al., Multiscale assembly of superinsulating Silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 25, 2326–2334 (2015)

    Article  CAS  Google Scholar 

  15. D.J. Boday, R.J. Stover, B. Muriithi et al., Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels. ACS Appl. Mater. Interfaces 1, 1364–1369 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. A. Katti, N. Shimpi, S. Roy et al., Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem. Mater. 18, 285–296 (2006)

    Article  CAS  Google Scholar 

  17. E. Joshua, D. Miller, High-Pressure Equation-of-State of Porous-Ta 2 O 5 (University of Rochester, Rochester, 2007)

    Google Scholar 

  18. A.S. Dorcheh, M.H. Abbasi, Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199(1), 10–26 (2008)

    Article  CAS  Google Scholar 

  19. K.B. Fournier, C. Constantin, J. Poco et al., Efficient multi-keV X-ray sources from Ti-doped aerogel targets. in Optical Science and Technology SPIE’s 48th Annual Meeting, International Society for Optics and Photonics (2004), pp. 194–204

  20. C.H. Lee, H. Jung, D.H. Jo, S. Jeon, S.H. Kim, Effect of surfactant on CO2 adsorption of APS-grafted silica gel by one-pot process. Bull. Chem. Soc. Jpn. 89, 823–832 (2016)

    Article  CAS  Google Scholar 

  21. C. Zhao, Y. Guo, W. Li, C. Bu, X. Wang, P. Lu, Experimental and modeling investigation on CO2 sorption kinetics over K2CO3-modified silica aerogels. Chem. Eng. J. 312, 50–58 (2017)

    Article  CAS  Google Scholar 

  22. A.S. Dorcheh, M.H. Abbasi, Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199, 10–26 (2008)

    Article  CAS  Google Scholar 

  23. J.L. Gurav, I.-K. Jung, H.-H. Park, E.S. Kang, D.Y. Nadargi, Silica aerogel: synthesis and applications. J. Nanomater. (2010). https://doi.org/10.1155/2010/409310

    Article  Google Scholar 

  24. N. Wang, M. Yao, P. Zhao, W. Hu, S. Komarneni, Remarkable electrochemical properties of novel LaNi0.5Co0.5O3/0.333Co3O4 hollow spheres with a mesoporous shell. J. Mater. Chem. A 5, 5838–5845 (2017)

    Article  CAS  Google Scholar 

  25. N. Wang, P. Zhao, Q. Zhang, M. Yao, W. Hu, Monodisperse nickel/cobalt oxide composite hollow spheres with mesoporous shell for hybrid supercapacitor: a facile fabrication and excellent electrochemical performance. Compos. B 113, 144–151 (2017)

    Article  CAS  Google Scholar 

  26. N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018)

    Article  CAS  Google Scholar 

  27. H. Ren, X. Shi, J. Zhu, Y. Zhang, Y. Bi, L. Zhang, Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption. J. Mater. Sci. 51, 6419–6427 (2016)

    Article  CAS  Google Scholar 

  28. J. Zhu, X. Yang, Z. Fu, J. He, C. Wang, W. Wu, L. Zhang, Three-dimensional macroassembly of sandwich-like, hierarchical, porous carbon/graphene nanosheets towards ultralight, superhigh surface area, multifunctional aerogels. Chem. Eur. J. 22, 2515–2524 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. C.E. Carraher Jr., General topics: silica aerogels-properties and uses. Polym. News 30, 386–388 (2005)

    Article  CAS  Google Scholar 

  30. G.M. Pajonk, Some applications of silica aerogels. Colloid Polym. Sci. 281, 637–651 (2003)

    Article  CAS  Google Scholar 

  31. M.M. Moner-Girona, E.A. Roig, J. Esteve et al., Sol-gel processing parameters and carbon addition. J. Non-Cryst. Solids 285, 1–3 (2001)

    Article  Google Scholar 

  32. V. Malgras, Q. Ji, Y. Kamachi et al., Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn. 88(9), 1171–1200 (2015)

    Article  CAS  Google Scholar 

  33. S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127, 741–741 (1931)

    Article  CAS  Google Scholar 

  34. U.K.H. Bangi, C-S Park, S Baek et al., Improvement in optical and physical properties of TEOS based aerogels using acetonitrile via ambient pressure drying. Ceram. Int. 38, 6883–6888 (2012)

    Article  CAS  Google Scholar 

  35. I.-K. Jung, L. Jyoti, H.-H. Gurav., Park et al., The properties of silica aerogels hybridized with SiO2 nanoparticles by ambient pressure drying. Ceram. Int. 38S, S105–S108 (2012)

    Article  CAS  Google Scholar 

  36. G. Hayase, K. Kanamori, K. Kazuki et al., Synthesis of new flexible aerogels from MTMS/DMDMS via ambient pressure drying. IOP Conf. Ser. 18, 032013 (2011)

    Article  Google Scholar 

  37. N. Leventis, C. Sotiriou-Leventis, G. Zhang et al., Nanoengineering strong silica aerogels. Nano Lett. 2, 957–960 (2002)

    Article  CAS  Google Scholar 

  38. N. Leventis, S. Mulik, X. Wang et al., Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. J. Non-Cryst. Solids 354, 632–644 (2008)

    Article  CAS  Google Scholar 

  39. A.V. Rao, S.D. Bhagat, H. Hiroshima et al., Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 300, 279–285 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. M.A.B. Meador, M. Ericka, R. Silva et al., Mechanically strong, flexible polyimide aerogels crosslinked with aromatic triamine. Appl. Mater. Interfaces 2, 536–544 (2012)

    Article  CAS  Google Scholar 

  41. S.Q. Li, H.B. Ren, J.Y. Zhu et al., Facile fabrication of superhydrophobic, mechanically strong multifunctional silica-based aerogels at benign temperature. J. Non-Cryst. Solids 473, 59–63 (2017)

    Article  CAS  Google Scholar 

  42. H.B. Ren, X.B. Wan, L. Zhang et al., Preparation of modified silica aerogel and its application in inertial confinement fusion experiment. High Power Laser Part. Beams 18, 1307–1310 (2006)

    CAS  Google Scholar 

  43. H. El Rassy, A.C. Pierre, NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics. J. Non-Cryst. Solids 351, 1603–1610 (2005)

    Article  CAS  Google Scholar 

  44. J. Yang, J.R. Chen, J.H. Song, Studies of the surface wettability and hydrothermal stability of methyl-modified silica films by FT-IR and Raman spectra. Vibrat. Spectrosc. 50, 178–184 (2009)

    Article  CAS  Google Scholar 

  45. H.B. Ren, Z.M. Qiao, X. Liu et al., Facile fabrication of graphite-doped silica aerogels with ultralow thermal conductivity by precise control. J. Non-Cryst. Solids 473, 59–63 (2017)

    Article  CAS  Google Scholar 

  46. L.A. Capadona, M.A. Meador, A. Alunni et al., Flexible, low-density polymer crosslinked silica aerogels. Polymer 47, 5754–5761 (2006)

    Article  CAS  Google Scholar 

  47. C.J. Lee, G.S. Kim, S.H. Hyun, Synthesis of silica aerogels from waterglass via new modified ambient drying. J. Mater. Sci. 37, 2237–2241 (2002)

    Article  CAS  Google Scholar 

  48. F. Schwertfeger, D. Frank, M. Schmidt, Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J. Non-Cryst. Solids 225, 24–29 (1998)

    Article  CAS  Google Scholar 

  49. S.D. Bhagat, Y.-H. Kim, K.-H. Suh et al., Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels. Microporous Mesoporous Mater. 112, 504–509 (2008)

    Article  CAS  Google Scholar 

  50. B. Zhou, J. Shen, X. Ni et al., Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Mater. Sci. Eng. C 27, 1291–1294 (2007)

    Article  CAS  Google Scholar 

  51. A.V. Rao, M.M. Kulkarni, G.M. Pajonk et al., Synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane as a Co-precursor. J. Sol-Gel Sci. Technol. 27, 103–109 (2003)

    Article  CAS  Google Scholar 

  52. F. Schwertfeger, W. Glaubitt, U. Schubert, Hydrophobic aerogels from tetramethoxysilane/methyltrimethoxysilane mixtures. J. Non-Cryst. Solids 145, 85–89 (1992)

    Article  CAS  Google Scholar 

  53. A.V. Rao, G.M. Pajonk, Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels. J. Non-Cryst. Solids 285, 202–209 (2001)

    Article  Google Scholar 

  54. L. Kocon, F. Despetis, J. Phalippou, Ultralow density silica aerogels by alcohol supercritical drying. J. Non-Cryst. Solids 225, 96–100 (1998)

    Article  CAS  Google Scholar 

  55. S.D. Bhagat, A. V. Rao, Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process. Appl. Surf. Sci. 252, 4289–4297 (2006)

    Article  CAS  Google Scholar 

  56. J. Zhu, J. He, Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4, 1770–1776 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. H. Ren, J. Zhu, Y. Bi, Y. Xu, L. Zhang, Assembly of methylated hollow silica nanospheres toward humidity-resistant antireflective porous films with ultralow refractive indices. J. Porous Mater. 25, 55–62 (2018)

    Article  CAS  Google Scholar 

  58. G. Zu, T. Shimizu, K. Kanamori, Y. Zhu, A. Maeno, H. Kaji, J. Shen, K. Nakanishi, Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 12, 521–532 (2018)

    Article  CAS  PubMed  Google Scholar 

  59. H. Yokogawa, M. Yokoyama, Hydrophobic silica aerogels. J. Non-Cryst. Solids 186, 23–29 (1995)

    Article  CAS  Google Scholar 

  60. Y. Duan, S.C. Jana, B. Lama, M.P. Espe, Hydrophobic silica aerogels by silylation. J. Non-Cryst. Solids 437, 26–33 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. 51502274) and the Doctoral Research Fund of Southwest University of Science and Technology (No. 15zx7137, 16zx7142). We also thank Xudong Cui for the English writing checking to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 142 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Ren, H. & Bi, Y. Facile fabrication of machinable low-density moisture-resistant silica aerogels. J Porous Mater 26, 399–407 (2019). https://doi.org/10.1007/s10934-018-0617-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0617-0

Keywords

Navigation