Skip to main content
Log in

Immobilization of the enzyme invertase in SBA-15 with surfaces functionalized by different organic compounds

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The search for appropriate supports for enzyme immobilization has attracted increasing interest in the field of biocatalysis. Immobilized enzymes are catalysts of enormous industrial interest because they combine the advantages of heterogeneous catalysis with the high selectivity and mild operational conditions of enzymes. This study evaluated the use of different organic molecules as functionalizing agents anchored on the silanol groups present on the surface of mesoporous materials such as SBA-15. This modification aims to increase the interaction of the enzyme invertase to the support, allowing for a greater amount of this biocatalyst to be immobilized. The hexagonal mesoporous material SBA-15, which has pores in the range of 40–60 Å, was synthesized and modified by the following organic compounds: trimethoxyphenylsilane, vinyltrimethoxysilane and 3-aminopropyltriethoxysilane (APTES). APTES showed the best results in increasing the anchoring of enzymes on the material’s surface, providing a specific amount of enzyme loaded onto the surface of approximately 80% and, thus, showing successful functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Chibata, Immobilized Enzymes: Research and Development, 1st edn, Kodonsha, New York, 1978

    Google Scholar 

  2. F.O. Bobbio, P.A. Bobbio, Introduction to Food Chemistry, 2nd edn, Varela, São Paulo, 1995

    Google Scholar 

  3. K. Faber, Biotransformations in Organic Chemistry (Springer, Berlin, 2004)

    Book  Google Scholar 

  4. G. Moffat, R.A. Williams, C. Webb, R. Stirling, Miner. Eng. 7, 1039 (1994)

    Article  CAS  Google Scholar 

  5. J.M. Palomo, R.L. Segura, G. Fernandez-Lorente, R. Fernandez-Lafuente, J.M. Guisán, Enzym. Microb. Technol. 40, 704 (2007)

    Article  CAS  Google Scholar 

  6. C.J. Cantarelli, Food Sci. 3, 3–20 (1989)

    Google Scholar 

  7. L. Canilha, W. de Carvalho, Biotechnol. Sci. Dev. 9 48–57; (2006)

    Google Scholar 

  8. L.D.S. Marquez, B.V. Cabral, V.L. Cardoso, E.J. Ribeiro, J. Mol. Catal. B 51, 86–92 (2008)

    Article  CAS  Google Scholar 

  9. E. Corcoran, Topics in Enzyme and fermentation biotechonology, In: A. Wiseman (ed.), The Production and Use of Immobilized Living Microbial Cells, (Wiley, Hoboken, 1985), pp. 12–50

    Google Scholar 

  10. E. Aquarone, W. Borzani, W. Schmidell, U.A. Lima, Industrial biotechnology, In: E. Blücher (ed.), Application of Enzymes in Food Technology, (Edgard Blücher Ltda, São Paulo, 2001), pp. 387–418

    Google Scholar 

  11. A.L. Doadrio, E.M.B. Sousa, J.C. Doadrio, J.P. Pariente, I. Izquierdo-Barba, M. Vallet-Regí, J. Control. Release 97, 125 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. U. Ciesla, F. Schüth, Microporous Mesoporous Mater. 27, 131 (1999)

    Article  CAS  Google Scholar 

  13. A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem. 27, 73 (2002)

    Article  CAS  Google Scholar 

  14. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, J. Am. Chem. Soc. 1992, 10834 (1992)

    Article  Google Scholar 

  15. Z. Luan, M. Hartmann, D. Zhao, W. Zhou, L. Kevan, Chem. Mater. 11, 1621 (1999)

    Article  CAS  Google Scholar 

  16. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B.F. Chmelka, Science 261, 1299 (1993)

    Article  CAS  PubMed  Google Scholar 

  17. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)

    Article  CAS  Google Scholar 

  18. B. Muñoz, a Rámila, J. Pérez-Pariente, I. Díaz, M. Vallet-Regí, Chem. Mater. 15, 500 (2003)

    Article  CAS  Google Scholar 

  19. F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45, 3216 (2006)

    Article  CAS  Google Scholar 

  20. J.M. Xue, M. Shi, J. Control. Release 98, 209 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Z. Liu, Z. Dong, B. Han, J. Zhang, J. Zhang, Z. Hou, J. He, T. Jiang, J. Mater. Chem. 13, 1373 (2003)

    Article  CAS  Google Scholar 

  22. E.F.S. Vieira, J.A. Simoni, C. Airoldi, J. Mater. Chem. 11, 2249 (1997)

    Article  Google Scholar 

  23. R. Huirache-Acuña, R. Nava, C.L. Peza-Ledesma, J. Lara-Romero, G. Alonso-Núñez, B. Pawelec, E.M. Rivera-Muñoz, Materials 6, 4139 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A.F. Santos, Immobilization of Invertase and commercial Saccharomyces cerevisiae in corncobs and bagasse sugar cane, Master Disertation, São Paulo (2010)

    Google Scholar 

  25. J. Bao, K. Koumatsu, K. Furumoto, M. Yoshimoto, K. Fukunaga, K. Nakao, Biochem. Eng. J. 22, 33 (2004)

    Article  CAS  Google Scholar 

  26. J. Kwagh-harlkya, C.C. Ariahu, J.O. Ayatse, Curr. Res. Nutr. Food Sci. 2, 1 (2013)

    Google Scholar 

  27. M.M. Bradford, Anal. Biochem. 72, 248 (1976)

    Article  CAS  PubMed  Google Scholar 

  28. S. Hermanová, M. Zarevúcká, D. Bouša, M. Pumera, Z. Sofer, Nanoscale 7, 5852 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. V.T. Motta, in: Basic biochemistry, MedBook (Eds.), Enzymes, Rio de Janeiro, 2011, pp. 68–101

  30. J.J. Moré, in The Levenberg–Marquardt Algorithm: Implementation and Theory, ed. by G.A. Watson (ed.), (Lecture Notes in Math. Berlin, 1977), pp. 105–116

  31. M. Kruk, M. Jaroniec, Chem. Mater. 12, 1961 (2000)

    Article  CAS  Google Scholar 

  32. M. Luechinger, R. Prins, G.D. Pirngruber, Microporous Mesoporous Mater. 158, 281 (2012)

    Article  CAS  Google Scholar 

  33. J.L. Foschiera, T.N. Pizzolato, E.V. Benvenutti, J. Braz. Chem. Soc. 12, 159 (2001)

    Article  CAS  Google Scholar 

  34. C.H. Rochester, G.H. Yong, J. Chem. Soc. Faraday Trans. I 76, 1158 (1980)

    Article  CAS  Google Scholar 

  35. G.E. Fryxell, P.C. Rieke, L.L. Wood, M.H. Engelhard, R.E. Williford, G.L. Graff, A.A. Campbell, R.J. Wiacek, L. Lee, A. Halverson, Langmuir 12, 5064 (1996)

    Article  CAS  Google Scholar 

  36. M. Vallet-Regi, J.C. Doadrio, A.L. Doadrio, I. Izquierdo-Barba, J. Perez-Pariente, Solid State Ionics 172, 435 (2004)

    Article  CAS  Google Scholar 

  37. S.W. Song, K. Hidajat, S. Kawi, Langmuir 21, 9568 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. L.M. Yang, Y.J. Wang, G.S. Luo, Y.Y. Dai, Microporous Mesoporous Mater. 84, 275 (2005)

    Article  CAS  Google Scholar 

  39. Z. Luan, J.A. Fournier, J.B. Wooten, D.E. Miser, Microporous Mesoporous Mater. 83, 150 (2005)

    Article  CAS  Google Scholar 

  40. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscow, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  41. O. Barbosa, R. Torres, C. Ortiz, R. Fernandez-Lafuente, Process Biochem. 47, 1220–1227 (2012)

    Article  CAS  Google Scholar 

  42. O. Barbosa, R. Torres, C. Ortiz, A. Berenguer-Murcia, R.C. Rodrigues, R. Fernandez-Lafuente, Biomacromolecules 14, 2433–2462 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. H. Zaak, S. Peirce, T.L. de Albuquerque, M. Sassi, R. Fernandez-Lafuente, Catalysts 7, 250 (2017)

    Article  CAS  Google Scholar 

  44. P.G. Vazquez-Ortega, M.T. Alcaraz-Fructuoso, J.A. Rojas-Contreras, J. López-Miranda, R. Fernandez-Lafuente, Enzym. Microb. Technol. 110, 38–45 (2018)

    Article  CAS  Google Scholar 

  45. O. Barbosa, C. Ortiz, A. Berenguer-Murcia, R. Torres, R.C. Rodrigues, R. Fernandez-Lafuente, RSC Adv. 4, 1583–1600 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the CAPES and CNPQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livia M. O. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, L.M.O., Falleiros, L.N.S.S., de Resende, M.M. et al. Immobilization of the enzyme invertase in SBA-15 with surfaces functionalized by different organic compounds. J Porous Mater 26, 77–89 (2019). https://doi.org/10.1007/s10934-018-0615-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0615-2

Keywords

Navigation