Skip to main content

Advertisement

Log in

Preparation and characterisation of carbon spheres for carbon dioxide capture

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Carbon spheres were prepared by carbonisation of phenolic resin spheres obtained using a modified Stöber method in a microwave assisted solvothermal reactor. Preparation process involved water–ethanol, ammonia water, resorcinol, potassium oxalate and formaldehyde. The mixture was stirred for 24 h at room temperature and then subjected to a pressure treatment, in which the solution was treated in a microwave assisted solvothermal reactor for 15 min at a pressure of 1–3 MPa. The proposed synthesis resulted in a material containing microporous carbon spheres having high surface area (from 1178 to 1648 m2/g), with diameters from 200 to 350 nm, total pore volume from 0.49 to 0.78 cm3/g, and high CO2 adsorption capacity from 3.86 to 5.03 mmol/g measured at 0.1 MPa and 25 °C. Taking into account the properties of the obtained material, it can be applied as a sorbent for CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.B. Smith, D. Tirpak (eds.), The Potential Effects of a Global Climate Change on the United States, Draft Report to Congress, vol. 2 (Environmental Protection Agency, Washington, DC, 1988)

    Google Scholar 

  2. B. Bolin, B.R. Doos, J. Jaeger, R.A. Warrick (eds.), The Greenhouse Effect, Climatic Change and Ecosystems (Wiley, New York, 1986)

    Google Scholar 

  3. G.J. MacDonald, in Preparing for Climate Change, Proceedings of the First North American Conference on Preparing for Climatic Change: A Cooperative Approach (Government Institutes, Rockville, 1988), pp. 108–117

  4. F.I. Woodward, Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327, 617–618 (1987)

    Article  Google Scholar 

  5. M.M. Maroto-Valer, Z. Tang, Z. Zhang, CO2 capture by activated and impregnated anthracites. Fuel Process. Technol. 86, 1487–1502 (2005)

    Article  CAS  Google Scholar 

  6. K. Labus, S. Gryglewicz, J. Machnikowski, Granular KOH-activated carbons from coal-based cokes and their CO2 adsorption capacity. Fuel 118, 9–15 (2014)

    Article  CAS  Google Scholar 

  7. K. Glonek, J. Srenscek-Nazzal, U. Narkiewicz, A.W. Morawski, R.J. Wróbel, B. Michalkiewicz, Preparation of activated carbon from beet molasses and TiO2 as the adsorption of CO2. Acta Phys. Pol. A 129(3), 158–161 (2016)

    Article  CAS  Google Scholar 

  8. J. Mlodzik, J. Srenscek-Nazzal, U. Narkiewicz, A.W. Morawski, R.J. Wrobel, B. Michalkiewicz, Activated carbon from molasses as CO2 sorbents. Acta Phys. Pol. A 129(3), 402–404 (2016)

    Article  CAS  Google Scholar 

  9. P. Davini, Flue gas treatment by activated carbon obtained from oil-fired fly ash. Carbon 40, 1973–1979 (2002)

    Article  CAS  Google Scholar 

  10. C. Lu, H. Bai, B. Wu, F. Su, J.F. Hwang, Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22, 3050–3056 (2008)

    Article  CAS  Google Scholar 

  11. A. Chen, Y. Yu, Y. Li, Y. Li, M. Jia, Solid-state grinding synthesis of ordered mesoporous MgO/carbon spheres composites for CO2 capture. Mater. Lett. 164, 520–523 (2016)

    Article  CAS  Google Scholar 

  12. V. Vignal, A.W. Morawski, H. Konno, M. Inagaki, Quantitative assessment of pores in oxidized carbon spheres using scanning tunnelling microscopy. J. Mater. Res. 14(3), 1102–1112 (1999)

    Article  CAS  Google Scholar 

  13. M. Nagashima, S. Shimada, M. Inagaki, T.A. Centeno, On the adsorption of CO2 by molecular sieve carbons—volumetric and gravimetric studies. Carbon 33(9), 1301–1306 (1995)

    Article  Google Scholar 

  14. Y.J. Kim, M.I. Kim, C.H. Yun, J.Y. Chang, C.R. Park, M. Inagaki, Comparative study of carbon dioxide and nitrogen atmospheric effects on the chemical structure changes during pyrolysis of phenol-formaldehyde spheres. J. Colloid Interface Sci. 274, 555–562 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. J. Liu, S.Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Zhao, G.Q. Lu, Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50(26), 5947–5951 (2011)

    Article  CAS  Google Scholar 

  16. J. Ludwinowicz, M. Jaroniec, Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2. Carbon 82, 297–303 (2015)

    Article  CAS  Google Scholar 

  17. N.P. Wickramaratne, J. Xu, M. Wang, L. Zhu, L. Dai, M. Jaroniec, Nitrogen enriched porous spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 26, 2820–2828 (2014)

    Article  CAS  Google Scholar 

  18. N.P. Wickramaratne, M. Jaroniec, Activated carbon spheres for CO2 adsorption. ACS Appl. Mater. Interfaces 5, 1849–1855 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. R.E. Riman, W.L. Suchanek, M.M. Lencka, Hydrothermal crystallization of ceramics. Ann. Chim. Sci. Mater. 27(6), 15–36 (2002)

    Article  CAS  Google Scholar 

  20. S. Kornarneni, Q. Li, K.M. Stefansson, R. Roy, Microwave-hydrothermal processing for synthesis of electroceramic powders. J. Mater. Res. 8, 3176–3183 (1993)

    Article  Google Scholar 

  21. R. Roy, Acceleration the kinetics of low-temperature inorganic syntheses. J. Solid State Chem. 111, 11–17 (1994)

    Article  CAS  Google Scholar 

  22. A. Opalińska, R. Pielaszek, W. Łojkowski, C. Leonelli, H. Matysiak, T. Wejrzanowski, K.J. Kurzydłowski, Grain size and grain size distribution of Pr-doped zirconia nanopowders determined by different methods. Materiały Ceramiczne 62, 550–555 (2010)

    Google Scholar 

  23. J. Kaszewski, S. Yatsunenko, I. Pelech, E. Mijowska, U. Narkiewicz, M. Godlewski, High pressure synthesis versus calcination—different approaches to crystallization of zirconium dioxide. Pol. J. Chem. Technol. 16(2), 99–105 (2014)

    Article  CAS  Google Scholar 

  24. D. Sibera, U. Narkiewicz, B. Michalkiewicz, A.W. Morawski, R.J.Wróbel, Metoda otrzymywania sfer węglowych w reaktorze mikrofalowym, jako materiał do sorpcji CO2 (Method for production of carbon spheres in microwave reactor, as material for CO2 sorption), Polish Patent declaration 416007 (2016)

  25. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  26. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  27. N.P. Wickramaratne, M. Jaroniec, Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J. Mater. Chem. A 1, 112–116 (2013)

    Article  CAS  Google Scholar 

  28. J.P. Marco-Lozar, M. Kunowsky, F. Suarez-Garcia, A. Linares-Solano, Gas storage scale-up at room temperature on high density carbon materials. Carbon 72, 125–132 (2014)

    Article  CAS  Google Scholar 

  29. S. Lee, S. Park, Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Colloid Interface Sci. 389, 230–235 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. M.E. Casco, M. Martinez-Escandell, J. Silvestre-Albero, F. Rodriguez-Reinoso, Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67, 230–235 (2014)

    Article  CAS  Google Scholar 

  31. L. Wang, R.T. Yang, Significantly Increased CO2 Adsorption Performance of Nanostructured Templated Carbon by Tuning Surface Area and Nitrogen Doping. J. Phys. Chem. C 116, 1099–1106 (2012)

    Article  CAS  Google Scholar 

  32. J. Silvestre-Albero, A. Wahby, A. Sepulveda-Escribano, M. Martinez-Escandell, K. Kaneko, F. Rodriguez-Reinoso, Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chem. Commun. 47, 6840–6842 (2011)

    Article  CAS  Google Scholar 

  33. V. Presser, J. McDonough, S. Yeon, Y. Gogotsi, Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 4, 3059–3066 (2011)

    Article  CAS  Google Scholar 

  34. X. Hu, M. Radosz, K.A. Cychosz, M. Thommes, CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ. Sci. Technol. 45, 7068–7074 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract No. Pol-Nor/237761/98.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Narkiewicz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 91 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibera, D., Narkiewicz, U., Kapica, J. et al. Preparation and characterisation of carbon spheres for carbon dioxide capture. J Porous Mater 26, 19–27 (2019). https://doi.org/10.1007/s10934-018-0601-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0601-8

Keywords

Navigation