Skip to main content
Log in

An efficient and controllable ultrasonic-assisted microwave route for flower-like Ta(V)–MOF nanostructures: preparation, fractional factorial design, DFT calculations, and high-performance N2 adsorption

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

With respect to different applications of metal–organic framework (MOF) in the medical, industrial and environmental fields, it is very important to choose a new structure that can be synthesized by fast, eco-friendly and affordable methods with distinctive properties so that the properties could be systematically controlled. In this study, new Ta–MOF nanostructures are synthesized by novel methods of microwave (Mw) and ultrasonic assisted microwave (UAMw) in environmental conditions. The final products are characterized by relevant techniques. Although in the both methods, the synthesized products have favourable properties; the use of the UAMw method would produce samples with distinct features such as high thermal stability of 240 °C, average particle size distribution (PSD) of 23 nm and significant specific surface area (SSA) of 2012 m2/g. For a better comprehension of the Ta–MOF formation, computational studies are performed using DFT calculations. In order to investigate the effect of the synthesis parameters on different features of the products, the fractional factorial design is used. The results of analysis of variance confirm that the parameters such as Mw power, Mw duration, ultrasonic temperature, ultrasonic power and ultrasonic duration have a significant effect on PSD and SSA of Ta–MOF samples. Due to the fractional factorial design of the experiments, response surface methodology would optimize the probability of producing samples with the small PSD of 15 nm and high SSA of 2588 m2/g; this desirable amount would provide situations to use these compounds in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. C. McKinstry, R.J. Cathcart, E.J. Cussen, A.J. Fletcher, S.V. Patwardhan, J. Sefcik, Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem. Eng. J. 285, 718–725 (2016)

    Article  CAS  Google Scholar 

  2. G. Sargazi, D. Afzali, A. Ghafainazari, H. Saravani, Rapid synthesis of cobalt metal organic framework. J. Inorg. Organomet. Polym. Mater. 24, 786–790 (2014)

    Article  CAS  Google Scholar 

  3. Y. Jiang, X. Zhang, X. Dai, W. Zhang, Q. Sheng, H. Zhuo, Y. Xiao, H. Wang, Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction. Nano Res. 10, 876–889 (2017)

    Article  CAS  Google Scholar 

  4. A. Nikseresht, A. Daniyali, M. Ali-Mohammadi, A. Afzalinia, A. Mirzaie, Ultrasound-assisted biodiesel production by a novel composite of Fe (III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem. 37, 203–207 (2017)

    Article  CAS  Google Scholar 

  5. N.A. Khan, S.H. Jhung, Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 285, 11–23 (2015)

    Article  CAS  Google Scholar 

  6. M.R. Armstrong, S. Senthilnathan, C.J. Balzer, B. Shan, L. Chen, B. Mu, Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis. Ultrason. Sonochem. 34, 365–370 (2017)

    Article  CAS  Google Scholar 

  7. P. George, N.R. Dhabarde, P. Chowdhury, Rapid synthesis of titanium based metal organic framework (MIL-125) via microwave route and its performance evaluation in photocatalysis. Mater. Lett. 186, 151–154 (2017)

    Article  CAS  Google Scholar 

  8. S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014)

    Article  Google Scholar 

  9. G. Sargazi, D. Afzali, A. Mostafavi, S.Y. Ebrahimipour, Ultrasound-assisted facile synthesis of a new tantalum (V) metal-organic framework nanostructure: design, characterization, systematic study, and CO 2 adsorption performance. J. Solid State Chem. 250, 32–48 (2017)

    Article  CAS  Google Scholar 

  10. N.D. Burrows, S. Harvey, F.A. Idesis, C.J. Murphy, Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments. Langmuir 33, 1891–1907 (2017)

    Article  CAS  Google Scholar 

  11. G. Maurin, C. Serre, A. Cooper, G. Férey, The new age of MOFs and of their porous-related solids Chem. Soc. Rev. 46, 3104–3107 (2017)

    Article  CAS  Google Scholar 

  12. K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, A review on contemporary metal–organic framework materials. Inorg. Chim. Acta 446, 61–74 (2016)

    Article  CAS  Google Scholar 

  13. L. Xu, H. Gong, L. Deng, F. Long, Y. Gu, J. Guan, Complex-mediated synthesis of tantalum oxyfluoride hierarchical nanostructures for highly efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 8, 9395–9404 (2016)

    Article  CAS  Google Scholar 

  14. G. Sargazi, D. Afzali, N. Daldosso, H. Kazemian, N. Chauhan, Z. Sadeghian, T. Tajerian, A. Ghafarinazari, M. Mozafari, A systematic study on the use of ultrasound energy for the synthesis of nickel–metal organic framework compounds. Ultrason. Sonochem. 27, 395–402 (2015)

    Article  CAS  Google Scholar 

  15. H. Fazelirad, M. Ranjbar, M.A. Taher, G. Sargazi, Preparation of magnetic multi-walled carbon nanotubes for an efficient adsorption and spectrophotometric determination of amoxicillin. J. Ind. Eng. Chem. 21, 889–892 (2015)

    Article  CAS  Google Scholar 

  16. I. Obot, D. Macdonald, Z. Gasem, Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corros. Sci. 99, 1–30 (2015)

    Article  CAS  Google Scholar 

  17. X. Liu, J. Xiong, L. Liang, Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. J. Nat. Gas Sci. Eng. 22, 62–72 (2015)

    Article  CAS  Google Scholar 

  18. N. Santhosh, G. Radhakrishnamacharya, A.J. Chamkha, Flow of a Jeffrey fluid through a porous medium in narrow tubes. J. Porous Media 18, 71–78 (2015)

    Article  Google Scholar 

  19. L. Esrafili, A.A. Tehrani, A. Morsali, Ultrasonic assisted synthesis of two urea functionalized metal organic frameworks for phenol sensing: a comparative study. Ultrason. Sonochem. 39, 307–312 (2017)

    Article  CAS  Google Scholar 

  20. G. Sargazi, D. Afzali, A. Mostafavi, A novel synthesis of a new thorium (IV) metal organic framework nanostructure with well controllable procedure through ultrasound assisted reverse micelle method. Ultrason. Sonochem. 41, 234–251 (2017)

    Article  Google Scholar 

  21. M.-H. Pham, G.-T. Vuong, F.-G. Fontaine, T.-O. Do, Rational Synthesis of metal–organic framework nanocubes and nanosheets using selective modulators and their morphology-dependent gas-sorption properties. Cryst. Growth Des. 12, 3091–3095 (2012)

    Article  CAS  Google Scholar 

  22. J.F.S. do Nascimento, B.S. Barros, J. Kulesza, J.B.L. de Oliveira, A.K.P. Leite, R.S. de Oliveira, Influence of synthesis time on the microstructure and photophysical properties of Gd-MOFs doped with Eu+. Mater. Chem. Phys. 190, 166–174 (2017)

    Article  Google Scholar 

  23. D. Chen, C. Chen, W. Shen, H. Quan, S. Chen, S. Xie, X. Luo, L. Guo, MOF-derived magnetic porous carbon-based sorbent: synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 28, 1769–1779 (2017)

    Article  CAS  Google Scholar 

  24. W.P. Deleu, I. Stassen, D. Jonckheere, R. Ameloot, D.E. De Vos, Waste PET (bottles) as a resource or substrate for MOF synthesis. J. Mater. Chem A 4, 9519–9525 (2016)

    Article  CAS  Google Scholar 

  25. J.-C. Yin, T.-Z. Qin, C. Hu, G.-M. He, B.-W. Zhao, C. Zhang, J. Wang, A copper(II)–gadolinium(III) heterometallic MOF: synthesis, structure, and electrochemical property. Mater. Lett. 197, 221–223 (2017)

    Article  CAS  Google Scholar 

  26. F. Jeremias, S.K. Henninger, C. Janiak, Ambient pressure synthesis of MIL-100 (Fe) MOF from homogeneous solution using a redox pathway. Dalton Trans. 45, 8637–8644 (2016)

    Article  CAS  Google Scholar 

  27. G. Sargazi, D. Afzali, A. Mostafavi, S.Y. Ebrahimipour, Synthesis of CS/PVA biodegradable composite nanofibers as a microporous material with well controllable procedure through electrospinning. J. Polym. Environ. (2017). https://doi.org/10.1007/s10924-017-1080-8

    Article  Google Scholar 

  28. V.K. Vankanti, V. Ganta, Optimization of process parameters in drilling of GFRP composite using Taguchi method. J. Mater. Res. Technol. 3, 35–41 (2014)

    Article  CAS  Google Scholar 

  29. Y. Hu, H. Yu, K. Dong, S. Yang, X. Ye, S. Chen, Analysis of the tenderisation of jumbo squid (Dosidicus gigas) meat by ultrasonic treatment using response surface methodology. Food Chem. 160, 219–225 (2014)

    Article  CAS  Google Scholar 

  30. C. Camposeco-Negrete, Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. J. Clean. Prod. 53, 195–203 (2013)

    Article  CAS  Google Scholar 

  31. W. Wang, Q. Li, Y. Liu, B. Chen, Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface. Ultrason. Sonochem. 24, 13–18 (2015)

    Article  CAS  Google Scholar 

  32. W. Li, G. Li, Q. Lv, W. Xu, L. Liu, Chromate adsorption on amine-functionalized core/shell magnetic mesoporous material. J. Porous Mater. 22, 965–972 (2015)

    Article  CAS  Google Scholar 

  33. Z.-M. Cui, J. Hao, C.-Y. Cao, W. Song, Mesoporous silica (meso-SiO2) was coated on the micro/nanomaterials with hierarchical structure such as flowerlike Fe2O3, flowerlike MgO, SnO2 nanospheres, Co3O4 nanosheets and nanowires from a simple solution method. The structure of the nanomaterials and the silica coating before and after stirring in solution were characterizated by SEM and TEM. The results show that meso-SiO2 coating was an ideal. J. Porous Mater. 24, 103–108 (2017)

    Article  CAS  Google Scholar 

  34. M. Ghaedi, M. Rahimi, A. Ghaedi, I. Tyagi, S. Agarwal, V.K. Gupta, Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood. J. Colloid Interface Sci. 461, 425–434 (2016)

    Article  CAS  Google Scholar 

  35. D. Liu, C. Huang, J. Wang, H. Zhu, P. Yao, Z. Liu, Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box–Behnken design. Ceram. Int. 40, 7899–7908 (2014)

    Article  CAS  Google Scholar 

  36. V.K. Gupta, S. Agarwal, M. Asif, A. Fakhri, N. Sadeghi, Application of response surface methodology to optimize the adsorption performance of a magnetic graphene oxide nanocomposite adsorbent for removal of methadone from the environment. J. Colloid Interface Sci. 497, 193–200 (2017)

    Article  Google Scholar 

  37. E. Bet-Moushoul, Y. Mansourpanah, K. Farhadi, M. Tabatabaei, TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 283, 29–46 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support for this work from the Shahid Bahonar University of Kerman (Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryoush Afzali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargazi, G., Afzali, D. & Mostafavi, A. An efficient and controllable ultrasonic-assisted microwave route for flower-like Ta(V)–MOF nanostructures: preparation, fractional factorial design, DFT calculations, and high-performance N2 adsorption. J Porous Mater 25, 1723–1741 (2018). https://doi.org/10.1007/s10934-018-0586-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0586-3

Keywords

Navigation