Chemical activation of mesoporous carbon with ultrahigh pore volume for highly supported adsorption of CO2

  • Siping Hu
  • Chun Li
  • De Wan
  • Kunming Li
  • Chunxiao Yu
  • Weiping Kong


A novel mesoporous carbon (AMC850) with worm-like mesoporosity, very large BET surface area (2935 m2/g), and ultrahigh pore volume of 3.41 cm3/g was facilely synthesized from etching of the pristine mesoporous carbon (MC850) with sodium amide (NaNH2). The mesoporosity in the synthesized AMC850 was significantly expanded in comparison with pristine mesoporous carbon. The synthesized AMC850acts as an efficient support, could accommodate much more pentaethylenehexamine (PEHA) in comparison with the pristine MC850, giving PEHA@AMC850 composites. The resultant PEHA@AMC850 showed much improved property for the selective capture of CO2 in comparison with AMC850 (2.02 mmol/g vs. 0.73 mmol/g, at 75 °C). Thus, the PEHA@AMC850 composites showed promising application in the selective capture of CO2 from flue gas.


Mesoporous carbon Chemical activation Pentaethylenehexamine Physical impregnation CO2 adsorption 



This work was supported by the Natural Science Foundation of Zhejiang Province (No. LQ18E030001) and the foundation of Key Laboratory of Effective Utilization of Chemical Resources in Beijing University of Chemical Technology (CRE-2017-C-205).


  1. 1.
    S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2, 796–854 (2009)CrossRefGoogle Scholar
  2. 2.
    K.C. Rice, K.M. Conko, G.M. Hornberger, Environ. Sci. Technol. 36, 4467–4475 (2002)CrossRefGoogle Scholar
  3. 3.
    G.T. Rochelle, Science 325, 1652–1654 (2009)CrossRefGoogle Scholar
  4. 4.
    E.S. Sanz-Pérez, C.R. Murdock, S.A. Didas, C.W. Jones, Chem. Rev. 116, 11840–11876 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Huang, F.J. Liu, S. Dai, J. Mater. Chem. A 4, 13063–13070 (2016)CrossRefGoogle Scholar
  6. 6.
    D.M. D’Alessandro, B. Smit, J.R. Long, Angew. Chem. Int. Ed. 49, 6058–6082 (2010)CrossRefGoogle Scholar
  7. 7.
    A.B. Rao, E.S. Rubin, Environ. Sci. Technol. 36, 4467–4475 (2002)CrossRefGoogle Scholar
  8. 8.
    W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna, H.C. Zhou, J. Am. Chem. Soc. 133, 18126–18129 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Zeng, R. Zou, Y. Zhao, Adv. Mater. 28, 2855–2873 (2016)CrossRefGoogle Scholar
  10. 10.
    F.J. Liu, K. Huang, S.M. Ding, S. Dai, J. Mater. Chem. A 4, 14567–14571 (2016)CrossRefGoogle Scholar
  11. 11.
    P. Bollini, S.A. Didas, C.W. Jones, J. Mater. Chem. 21, 15100–15120 (2011)CrossRefGoogle Scholar
  12. 12.
    S.A. Didas, S. Choi, W. Chaikittisilp, C.W. Jones, Acc. Chem. Res. 48, 2680–2687 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Huang, S.H. Chai, R.T. Mayes, G.M. Veith, K.L. Browning, M.A. Sakwa-Novak, M.E. Potter, C.W. Jones, Y.T. Wu, S. Dai, Chem. Commun. 51, 17261–17264 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Huang, S.H. Chai, R.T. Mayes, S. Tan, C.W. Jones, S. Dai, Microporous Mesoporous Mater. 230, 100–108 (2016)CrossRefGoogle Scholar
  15. 15.
    E.E. Ünveren, B. Monkul, Ş Sarıoğlan, N. Karademir, E. Alper, Petroleum 3, 37–50 (2017)CrossRefGoogle Scholar
  16. 16.
    X.Q. Wang, J.S. Lee, C. Tsouris, D.W. DePaoli, S. Dai, J. Mater. Chem. 20, 4602–4608 (2010)CrossRefGoogle Scholar
  17. 17.
    X.Q. Wang, C.G. Liu, D. Neff, P.F. Fulvio, R.T. Mayes, A. Zhamu, Q. Fang, G.R. Chen, H.M. Meyer, B.Z. Jang, S. Dai, J. Mater. Chem. A 1, 7920–7926 (2013)CrossRefGoogle Scholar
  18. 18.
    F.J. Liu, K. Huang, Q. Wu, S. Dai, Adv. Mater. 29, 1700445 (2017)CrossRefGoogle Scholar
  19. 19.
    F.J. Liu, K. Huang, C.-J. Yoo, C. Okonkwo, D.-J. Tao, C.W. Jones, S. Dai, Chem. Eng. J. 314, 466–476 (2017)CrossRefGoogle Scholar
  20. 20.
    L.A. Darunte, K.S. Walton, D.S. Sholl, C.W. Jones, Curr. Opin. Chem. Eng. 12, 82–90 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shaoxing UniversityShaoxingChina
  2. 2.Zhejiang Medicine Co., Ltd.ShaoxingChina

Personalised recommendations