Enhanced catalytic oxidation of monoterpenes by zeolite-Y entrapped iron complex: spectral studies and mechanistic vision

  • Jignasu P. Mehta
  • Digvijaysinh K. Parmar
  • Haresh D. Nakum
  • Dinesh R. Godhani
  • Nisheeth C. Desai
Article
  • 5 Downloads

Abstract

[Fe(L)2(H2O)2]–Y complex (where, L = (Z)-2-((4-hydroxybenzylidene)-amino)benzoic acid) has been synthesized by Flexible Ligand (FL) method and characterized by chemical analysis (CHN, ICP-OES, TGA, AAS), diffraction method (XRD), absorption spectroscopy (FTIR, UV–Vis), BET and SEM techniques. To investigate the catalytic performance (activity, stability, and reusability), [Fe(L)2(H2O)2]–Y was employed as heterogeneous catalyst in the liquid phase oxidation of α-pinene and limonene with H2O2 oxidant. [Fe(L)2(H2O)2]–Y catalyzed the oxidation of α-pinene via free radical formation as confirmed by in-situ IR and DR UV–Vis spectroscopy. [Fe(L)2(H2O)2]–Y showed conversion of α-pinene (67%) and limonene (79%) with better TONs, which is far better performance than neat iron complex.

Keywords

Metal complex Zeolite-Y Heterogeneous catalysis Oxidation Monoterpenes 

Notes

Acknowledgements

One of the authors, D.K. Parmar (JRF), is thankful to the University Grants Commission, New Delhi, India for providing financial support (F. No. 42–290/2013 (SR) dated 25/03/2013) to carry out this work.

References

  1. 1.
    L. Saikia, D. Srinivas, P. Ratnasamy, Appl. Catal. A: Gen. 309, 144 (2006)CrossRefGoogle Scholar
  2. 2.
    W.E. Erman, An Encyclopedic Handbook (Marcel Dekker, New York, 1985), p. 12Google Scholar
  3. 3.
    J.L.F. Monteiro, C.O. Veloso, Top. Catal. 27, 180 (2004)CrossRefGoogle Scholar
  4. 4.
    D. Clemente-Tejeda, A. López-Moreno, F.A. Bermejo, Tetrahedron 69, 2977 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Ghorbanloo, A. Mohamadi, M. Amini, J. Tao, Trans. Met. Chem. 40, 321 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Menini, M.J. da Silva, M.F.F. Lelis, J.D. Fabris, R.M. Lago, E.V. Gusevskaya, Appl. Catal. A: Gen. 269, 117 (2004)CrossRefGoogle Scholar
  7. 7.
    P. Oliveira, M.L. Rojas-Cervantes, A.M. Ramos, I.M. Fonseca, A.M. Botelho do Rego, J. Vital, Catal Today. 118, 307 (2006)CrossRefGoogle Scholar
  8. 8.
    E. Salminen, P. Mäki-Arvela, P. Virtanen, T. Salmi, J.P. Mikkola, Top Catal. 57, 1533 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Tudorache, A. Gheorghe, A.S. Viana, V.I. Parvulescu, J. Mol. Catal. B: Enzym. 134, 9 (2016)CrossRefGoogle Scholar
  10. 10.
    D.R. Godhani, H.D. Nakum, D.K. Parmar, J.P. Mehta, N.C. Desai, Inorg. Chem. Commun. 72, 105 (2016)CrossRefGoogle Scholar
  11. 11.
    T. Joseph, D.P. Sawant, C.S. Gopinath, S.B. Halligudi, J. Mol. Catal. A: Chem. 184, 289 (2002)CrossRefGoogle Scholar
  12. 12.
    C.K. Modi, J.A. Chudasama, H.D. Nakum, D.K. Parmar, A.L. Patel, J. Mol. Catal. A: Chem. 395, 151 (2014)CrossRefGoogle Scholar
  13. 13.
    P.A.R. Dutenhefner, K.A. da Silva Rocha, E.M.B. Sousa, E.V. Gusevskaya, J. Catal. 265, 72 (2009)CrossRefGoogle Scholar
  14. 14.
    A. Wróblewska, Molecules. 19, 19907 (2014)CrossRefGoogle Scholar
  15. 15.
    S.M. Islam, A.S. Roy, P. Mondal, S. Paul, N. Salam, Inorg. Chem. Commun. 24, 170 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Li, J. Valla, J. Garcia-Martinez, ChemCatChem 6, 46 (2014)CrossRefGoogle Scholar
  17. 17.
    N.V. Maksimchuk, M.N. Timofeeva, M.S. Melgunov, A.N. Shmakov, Y.A. Chesalov, D.N. Dybtsev, V.P. Fedin, O.A. Kholdeeva, J. Catal. 257, 315 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Juan-Alcañiz, E.V. Ramos-Fernandez, U. Lafont, J. Gascon, F. Kapteijn, J. Catal. 269, 229 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, V. Degirmenci, C. Li, E.J.M. Hensen, ChemSusChem. 4, 59 (2011)CrossRefGoogle Scholar
  20. 20.
    O.V. Zalomaeva, K.A. Kovalenko, Y.A. Chesalov, M.S. Mel’gunov, V.I. Zaikovskii, V.V. Kaichev, A.B. Sorokin, O.A. Kholdeeva, V.P. Fedin, Dalton Trans. 40, 1441 (2011)CrossRefGoogle Scholar
  21. 21.
    E. Kockrick, T. Lescouet, E.V. Kudrik, A.B. Sorokin, D. Farrusseng, Chem. Commun. 47, 1562 (2011)CrossRefGoogle Scholar
  22. 22.
    K.K. Bania, D. Bharali, B. Viswanathan, R.C. Deka, Inorg. Chem. 51, 1657 (2012)CrossRefGoogle Scholar
  23. 23.
    K. Kervinen, P.C.A. Bruijnincx, A.M. Beale, J.G. Mesu, G. van Koten, R.J.M.K. Gebbink, B.M. Weckhuysen, J. Am. Chem. Soc. 128, 3208 (2006)CrossRefGoogle Scholar
  24. 24.
    A. Corma, H. Garcia, Eur. J. Inorg. Chem. 2004(6) 1143–1164 (2004)CrossRefGoogle Scholar
  25. 25.
    J.P. Mehta, D.K. Parmar, H.D. Nakum, D.R. Godhani, N.C. Desai, J. Porous Mater. 23, 1507 (2016)CrossRefGoogle Scholar
  26. 26.
    J.P. Mehta, D.K. Parmar, D.R. Godhani, H.D. Nakum, N.C. Desai, J. Mol. Catal. A: Chem. 421, 178 (2016)CrossRefGoogle Scholar
  27. 27.
    J.P. Mehta, D.K. Parmar, H.D. Nakum, D.R. Godhani, N.C. Desai, Microporous Mesoporous Mater. 247, 198 (2017)CrossRefGoogle Scholar
  28. 28.
    M.N. Ibrahim, S.A.I. Sharif, E- J. Chem. 8, 180 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Koner, Chem. Commun. 5, 593 (1998)CrossRefGoogle Scholar
  30. 30.
    P. Chen, B. Fan, M. Song, C. Jin, J. Ma, R. Li, Catal. Commun. 7, 969 (2006)CrossRefGoogle Scholar
  31. 31.
    W.H. Quayle, J.H. Lunsford, Inorg. Chem. 21, 97 (1982)CrossRefGoogle Scholar
  32. 32.
    M. Jafarian, M. Rashvandavei, M. Khakali, F. Gobal, S. Rayati, M.G. Mahjani, J. Phys. Chem. C. 116, 18518 (2012)CrossRefGoogle Scholar
  33. 33.
    C.K. Modi, B.G. Gade, J.A. Chudasama, D.K. Parmar, H.D. Nakum, A.L. Patel, Spectrochim. Acta Mol. Biomol. Spectrosc. 140, 174 (2015)CrossRefGoogle Scholar
  34. 34.
    T. Mathur, J. Dinda, P. Datta, G. Mostafa, T.-H. Lu, C. Sinha, Polyhedron 25, 2503 (2006)CrossRefGoogle Scholar
  35. 35.
    T.K. Mondal, P. Raghavaiah, A.K. Patra, C. Sinha, Inorg. Chem. Commun. 13, 273 (2010)CrossRefGoogle Scholar
  36. 36.
    T.K. Mondal, J.-S. Wu, T.-H. Lu, R. Pallepogu, A.K. Patra, C. Sinha, Sk. Jasimuddin, J. Organomet. Chem. 694, 3518 (2009)CrossRefGoogle Scholar
  37. 37.
    T.K. Misra, D. Das, C. Sinha, P.K. Ghosh, C.K. Pal, Inorg. Chem. 37, 1672 (1998)CrossRefGoogle Scholar
  38. 38.
    F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, (1999) Advanced Inorganic Chemistry (Wiley, New York, pp. 1–1376)Google Scholar
  39. 39.
    B. Dutta, S. Jana, R. Bera, P.K. Saha, S. Koner, Appl. Catal. A: Gen. 318, 89 (2007)CrossRefGoogle Scholar
  40. 40.
    K. Balkus Jr., M. Eisa, R. Levedo, J. Am. Chem. Soc. 117, 10753 (1995)CrossRefGoogle Scholar
  41. 41.
    A. Corma, M.T. Nemeth, M. Renz, S. Valencia, Nature. 412, 423 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jignasu P. Mehta
    • 1
  • Digvijaysinh K. Parmar
    • 1
  • Haresh D. Nakum
    • 1
  • Dinesh R. Godhani
    • 1
  • Nisheeth C. Desai
    • 1
  1. 1.Department of Chemistry, (UGC NON-SAP & DST-FIST Sponsored Department)Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar UniversityBhavnagarIndia

Personalised recommendations