Skip to main content
Log in

Rapid and phase pure synthesis of microporous copper silicate (CuSH–1Na) with 12-ring channel system

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Phase pure sample of the microporous copper silicate CuSH–1Na has been obtained by simplified hydrothermal method without using additives (H2O2 and Na2HPO4). Ion exchange of Na+ by Cs+, Ca2+ and Sr2+ ions showed that the structure can suffer partial replacement of the charge compensating cations. Ion exchange with Cs+ resulted in distinct dehydration while the ion exchange with Sr2+ increased the total amount of water. Water content in the Ca-exchanged sample is comparable to the as-synthesized sodium phase. Raman spectroscopy revealed that the divalent cations as Ca2+ and Sr2+ induce stronger local structural deformations than the monovalent Cs+. These structural changes have been also followed by the refined lattice distortions. Magnetic analyses showed that CuSH–1Na presents a very weak ferromagnetic interaction along the Cu2+ chains with a nearly vanishing Curie–Weiss temperature. This magnetic coupling is associated with super-super-exchange interactions through Cu–Na–O–Na–Cu paths. Antiferromagnetic coupling, attributed to inter-chains super-super-exchange interactions, competes with the ferromagnetic one and prevails at the lowest temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Rocha, M.W. Anderson, Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. Eur. J. Inorg. Chem. 5, 801–818 (2000)

    Article  Google Scholar 

  2. K. Popa, C.C. Pavel, Radioactive wastewaters purification using titanosilicates materials: state of the art and perspectives. Desalination 293, 78–86 (2012)

    Article  CAS  Google Scholar 

  3. C.C. Pavel, K. Popa, Investigations on the ion exchange process of Cs+ and Sr2+ cations by ETS materials. Chem. Eng. J. 245, 288–294 (2014)

    Article  CAS  Google Scholar 

  4. O. Oleksiienko, C. Wolkersdorfer, M. Sillanpaa, Titanosilicates in cation adsorption and cation exchange—a review. Chem. Eng. J. 317, 570–585 (2017)

    Article  CAS  Google Scholar 

  5. M.W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S.P. Mackay, A. Ferreira, J. Rocha, S. Lidin, Structure of the microporous titanosilicate Ets-10. Nature 367(6461), 347–351 (1994)

    Article  CAS  Google Scholar 

  6. D.M. Chapman, A.L. Roe, Synthesis, characterization and crystal-chemistry of microporous titanium-silicate materials. Zeolites 10(8), 730–737 (1990)

    Article  CAS  Google Scholar 

  7. M.S. Dadachov, J. Rocha, A. Ferreira, Z. Lin, M.W. Anderson, Ab initio structure determination of layered sodium titanium silicate containing edge-sharing titanate chains (AM-4) Na-3(Na,H)Ti2O2[Si2O6]·2.2H2O. Chem. Commun. 24, 2371–2372 (1997)

    Article  Google Scholar 

  8. S. Ferdov, U. Kolitsch, O. Petrov, V. Kostov-Kytin, C. Lengauer, E. Tillmanns, Synthesis and crystal structure of a new microporous zircono silicate, MCV-2. Microporous Mesoporous Mater. 81(1–3), 79–86 (2005)

    Article  CAS  Google Scholar 

  9. S.R. Jale, A. Ojo, F.R. Fitch, Synthesis of microporous zirconosilicates containing ZrO6 octahedra and SiO4 tetrahedra. Chem. Commun. 5, 411–412 (1999)

    Article  Google Scholar 

  10. S.M. Kuznicki, D.T. Hayhurst, Synthesis of Ets-10, a new wide-pore titanium silicate molecular-sieve. Abs. Pap. Am. Chem. Soc. 202, 78-Petr (1991)

    Google Scholar 

  11. Z. Lin, J. Rocha, Small-pore framework zirconium and hafnium silicates with the structure of mineral tumchaite. Microporous Mesoporous Mater. 76(1–3), 99–104 (2004)

    Article  CAS  Google Scholar 

  12. Z. Lin, J. Rocha, Hydrothermal synthesis of the tin analogue of penkvilksite-2O. Eur. J. Mineral. 17(6), 869–873 (2005)

    Article  CAS  Google Scholar 

  13. Z. Lin, J. Rocha, P. Brandao, A. Ferreira, A.P. Esculcas, J.D.P. deJesus, A. Philippou, M.W. Anderson, Synthesis and structural characterization of microporous umbite, penkvilksite, and other titanosilicates. J. Phys. Chem. B 101(36), 7114–7120 (1997)

    Article  CAS  Google Scholar 

  14. Z. Lin, J. Rocha, J.D.P. de Jesus, A. Ferreira, Synthesis and structure of a novel microporous framework stannosilicate. J. Mater. Chem. 10(6), 1353–1356 (2000)

    Article  CAS  Google Scholar 

  15. R.P. Nikolova, K. Fujiwara, N. Nakayama, V. Kostov-Kytin, Crystal structure of a new small-pore zirconosilicate Na2ZrSi2O7·H2O and its relation to stoichiometrically and topologically similar compounds. Solid State Sci. 11(2), 382–388 (2009)

    Article  CAS  Google Scholar 

  16. J. Rocha, P. Brandao, Z. Lin, M.W. Anderson, V. Alfredsson, O. Terasaki, The first large-pore vanadosilicate framework containing hexacoordinated vanadium. Angew. Chem. Int. Ed. Engl. 36(1–2), 100–102 (1997)

    Article  CAS  Google Scholar 

  17. X.Q. Wang, L.M. Liu, A.J. Jacobson, Open-framework and microporous vanadium silicates. J. Am. Chem. Soc. 124(26), 7812–7820 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. X.Q. Wang, L.M. Liu, A.J. Jacobson, The novel open-framework vanadium silicates K-2(VO)(Si4O10)·H2O (VSH-1) and Cs-2(VO)(Si6O14)·3H2O (VSH-2). Angew. Chem. Int. Ed. 40(11), 2174–2176 (2001)

    Article  CAS  Google Scholar 

  19. D.M. Poojary, R.A. Cahill, A. Clearfield, Synthesis, crystal-structures, and ion-exchange properties of a novel porous titanosilicate. Chem. Mater. 6(12), 2364–2368 (1994)

    Article  CAS  Google Scholar 

  20. Z. Lin, J. Rocha, A. Valente, Synthesis and characterisation of a framework microporous stannosilicate. Chem. Commun. 24, 2489–2490 (1999)

    Article  Google Scholar 

  21. R. Millini, A. Carati, G. Bellussi, G. Cruciani, W.O. Parker, C. Rizzo, S. Zanardi, Synthesis, characterization and crystal structure of EMS-2—a novel microporous stannosilicate. Microporous Mesoporous Mater. 101(1–2), 43–49 (2007)

    Article  CAS  Google Scholar 

  22. M.A.R. Peixoto, S. Ferdov, Crystal structure, thermal flexibility and structural transformations of tin umbite and copper exchanged tin umbite prepared from clear solution. J. Porous Mater. 20(5), 1171–1178 (2013)

    Article  CAS  Google Scholar 

  23. L. Zhang, D.L. He, Y.C. Zou, S.J. Ma, F.S. Xiao, Synthesis and characterization of a novel microporous framework stannosilicate. Chem. J. Chin. Univ. 31(4), 635–637 (2010)

    CAS  Google Scholar 

  24. S. Zanardi, A. Carati, G. Cruciani, G. Bellussi, R. Millini, C. Rizzo, Synthesis, characterization and crystal structure of new microporous bismuth silicates. Microporous Mesoporous Mater. 97(1–3), 34–41 (2006)

    Article  CAS  Google Scholar 

  25. D. Ananias, S. Ferdov, F.A.A. Paz, R.A.S. Ferreira, A. Ferreira, C.F.G.C. Geraldes, L.D. Carlos, Z. Lin, J. Rocha, Photoluminescent layered lanthanide silicate nanoparticles. Chem. Mater. 20(1), 205–212 (2008)

    Article  CAS  Google Scholar 

  26. D. Ananias, A. Ferreira, J. Rocha, P. Ferreira, J.P. Rainho, C. Morais, L.D. Carlos, Novel microporous europium and terbium silicates. J. Am. Chem. Soc. 123(24), 5735–5742 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. D. Ananias, M. Kostova, F.A.A. Paz, A. Ferreira, L.D. Carlos, J. Klinowski, J. Rocha, Photoluminescent layered lanthanide silicates. J. Am. Chem. Soc. 126(33), 10410–10417 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. A. Ferreira, D. Ananias, L.D. Carlos, C.M. Morais, J. Rocha, Novel microporous lanthanide silicates with tobermorite-like structure. J. Am. Chem. Soc. 125(47), 14573–14579 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. S.M. Kuznicki, V.A. Bell, S. Nair, H.W. Hillhouse, R.M. Jacubinas, C.M. Braunbarth, B.H. Toby, M. Tsapatsis, A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules (vol 412, pg 720, 2001). Nature 413(6856), 652–652 (2001)

    Article  CAS  Google Scholar 

  30. F.X.L.I. Xamena, P. Calza, C. Lamberti, C. Prestipino, A. Damin, S. Bordiga, E. Pelizzetti, A. Zecchina, Enhancement of the ETS-10 titanosilicate activity in the shape-selective photocatalytic degradation of large aromatic molecules by controlled defect production. J. Am. Chem. Soc. 125(8), 2264–2271 (2003)

    Article  CAS  Google Scholar 

  31. K. Popa, C.C. Pavel, N. Bilba, A. Cecal, Purification of waste waters containing Co-60(2+), Cd-115m(2+) and Hg-203(2+) radioactive ions by ETS-4 titanosilicate. J. Radioanal. Nucl. Chem. 269(1), 155–160 (2006)

    Article  CAS  Google Scholar 

  32. M.L. Pinto, J. Rocha, J.R.B. Gomes, J. Pires, Slow release of NO by microporous titanosilicate ETS-4. J. Am. Chem. Soc. 133(16), 6396–6402 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. S. Ferdov, E. Shikova, Z. Ivanova, L.T. Dimowa, R.P. Nikolova, Z. Lin, B.L. Shivachev, A microporous titanosilicate for selective killing of HeLa cancer cells. RSC Adv. 3(23), 8843–8848 (2013)

    Article  CAS  Google Scholar 

  34. S. Ferdov, Low-density macroporous foams obtained from a molecular sieve by temperature-induced amorphization. Angew. Chem. Int. Ed. 52(46), 12135–12138 (2013)

    Article  CAS  Google Scholar 

  35. X.Q. Wang, L.M. Liu, A.J. Jacobson, Nanoporous copper silicates with one-dimensional 12-ring channel systems. Angew. Chem. Int. Ed. 42(18), 2044–2047 (2003)

    Article  CAS  Google Scholar 

  36. X.Q. Wang, L.M. Liu, L.B. Wang, A.J. Jacobson, Hydrothermal synthesis and structures of the open-framework copper silicates Na-2[Cu2Si4O11](H2O)(2) (CuSH-2Na), Na-2[CuSi3O8] (CuSH-3Na), Cs2Na4[Cu2Si12O7(OH)(2)](OH)(2) (CuSH-4NaCs), and Na-2[Cu2Si5O13](H2O)(3) (CuSH-6Na). Solid State Sci. 7(11), 1415–1422 (2005)

    Article  CAS  Google Scholar 

  37. S.J. Datta, C. Khumnoon, Z.H. Lee, W.K. Moon, S. Docao, T.H. Nguyen, I.C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K.B. Yoon, CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate. Science 350(6258), 302–306 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. A. Le Bail, Whole powder pattern decomposition methods and applications: a retrospection. Powder Diffr. 20(4), 316–326 (2005)

    Article  CAS  Google Scholar 

  39. R.D. Shannon, Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(Sep1), 751–767 (1976)

    Article  Google Scholar 

  40. G.J. Kramer, N.P. Farragher, B.W.H. Vanbeest, R.A. Vansanten, Interatomic force-fields for silicas, aluminophosphates, and zeolites—derivation based on abinitio calculations. Phys. Rev. B 43(6), 5068–5080 (1991)

    Article  CAS  Google Scholar 

  41. A.J.M. Deman, R.A. Vansanten, The relation between zeolite framework structure and vibrational-spectra. Zeolites 12(3), 269–279 (1992)

    Article  CAS  Google Scholar 

  42. R.L. Frost, Y.F. Xi, Raman spectroscopic study of the mineral shattuckite Cu-5(SiO3)(4)(OH)(2). Spectrochim. Acta Part A 87 (2012) 241–244

    Article  CAS  Google Scholar 

  43. M. Tribaudino, L. Mantovani, D. Bersani, P.P. Lottici, Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes. Am. Mineral. 97(8–9), 1339–1347 (2012)

    Article  CAS  Google Scholar 

  44. P.K. Dutta, B. Delbarco, Raman-spectroscopic studies of zeolite framework—hydrated zeolite a and the influence of cations. J. Phys. Chem. 89(10), 1861–1865 (1985)

    Article  CAS  Google Scholar 

  45. S. Nair, M. Tsapatsis, B.H. Toby, S.M. Kuznicki, A study of heat-treatment induced framework contraction in strontium-ETS-4 by powder neutron diffraction and vibrational spectroscopy. J. Am. Chem. Soc. 123(51), 12781–12790 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. J.C. Bonner, M.E. Fisher, Linear magnetic chains with anisotropic coupling. Phys. Rev. 135(3A), A640 (1964)

    Article  Google Scholar 

  47. B. Zhang, Y. Zhang, Z.M. Wang, D.W. Wang, P.J. Baker, F.L. Pratt, D.B. Zhu, Candidate quantum spin liquid due to dimensional reduction of a two-dimensional honeycomb lattice. Sci. Rep. 4 (2014)

  48. S. Bala, S. Bhattacharya, A. Goswami, A. Adhikary, S. Konar, R. Mondal, Designing functional metal-organic frameworks by imparting a hexanuclear copper-based secondary building unit specific properties: structural correlation with magnetic and photocatalytic activity. Cryst. Growth Des. 14(12), 6391–6398 (2014)

    Article  CAS  Google Scholar 

  49. P. Brandao, M.S. Reis, Z. Gai, A.M. dos Santos, Novel alkaline earth copper germanates with ferro and antiferromagnetic S = 1/2 chains. J. Solid State Chem. 198, 39–44 (2013)

    Article  CAS  Google Scholar 

  50. S. Blundell, Magnetism in Condensed Matter. (Oxford University Press, Oxford, 2001)

    Google Scholar 

  51. J.B. Goodenough, An interpretation of the magnetic properties of the perovskite-type mixed crystals La1-Xsrxcoo3-λ. J. Phys. Chem. Solids 6(2–3), 287–297 (1958)

    Article  CAS  Google Scholar 

  52. H.J. Koo, D. Dai, M.H. Whangbo, Importance of supersuperexchange interactions in determining the dimensionality of magnetic properties. Determination of strongly interacting spin exchange paths in A(2)CU(PO4)(2) (A = Ba, Sr), ACuP(2)O(7) (Ba, Ca, Sr, Pb), CaCuGe2O6, and Cu2UO2(PO4)(2) on the basis of qualitative spin dimer analysis. Inorg. Chem. 44(12), 4359–4365 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. M.H. Whangbo, H.J. Koo, D. Dai, D. Jung, Interpretation of the magnetic structures of Cu2Te2O5 × 2 (X = Cl, Br) and Ca3.1Cu0.9RuO6 on the basis of electronic structure considerations: cases for strong super-superexchange interactions involving Cu2+ ions. Inorg. Chem. 42(12), 3898–3906 (2003)

    Article  CAS  PubMed  Google Scholar 

  54. J. Deisenhofer, R.M. Eremina, A. Pimenov, T. Gavrilova, H. Berger, M. Johnsson, P. Lemmens, H.A.K. von Nidda, A. Loidl, K.S. Lee, M.H. Whangbo, Structural and magnetic dimers in the spin-gapped system CuTe2O5. Phys. Rev. B 74(17) (2006)

  55. H.J. Koo, K.S. Lee, M.H. Whangbo, Spin dimer analysis of the magnetic structures of Ba3Cr2O8, Ba3Mn2O8, Na4FeO4, and Ba2CoO4 with a three-dimensional network of isolated MO4 (M = Cr, Mn, Fe, Co) tetrahedra. Inorg. Chem. 45(26), 10743–10749 (2006)

    Article  CAS  PubMed  Google Scholar 

  56. R. Nath, K.M. Ranjith, J. Sichelschmidt, M. Baenitz, Y. Skourski, F. Alet, I. Rousochatzakis, A.A. Tsirlin, Hindered magnetic order from mixed dimensionalities in CuP2O6. Phys. Rev. B 89(1) (2014)

  57. R. Nath, A.A. Tsirlin, E.E. Kaul, M. Baenitz, N. Buttgen, C. Geibel, H. Rosner, Strong frustration due to competing ferromagnetic and antiferromagnetic interactions: Magnetic properties of M(VO)(2)(PO(4))(2) (M = Ca and Sr). Phys. Rev. B 78(2) (2008)

Download references

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (IF/01516/2013 and IF/00686/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Ferdov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, A.M.L., Lin, Z. & Ferdov, S. Rapid and phase pure synthesis of microporous copper silicate (CuSH–1Na) with 12-ring channel system. J Porous Mater 25, 1309–1316 (2018). https://doi.org/10.1007/s10934-017-0541-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0541-8

Keywords

Navigation