Effects of boron and fluorine modified γ-Al2O3 with tailored surface acidity on catalytic ethanol dehydration to ethylene

Article
  • 60 Downloads

Abstract

The effect of boron and fluorine modified γ-Al2O3 was investigated during ethanol dehydration to ethylene. The conventional and modified γ-Al2O3 were prepared by a sol–gel method and characterized by various techniques. The results showed that boron modified γ-Al2O3 possessed decreased amount of Lewis acid sites by increasing the boron content. Fluorine modified γ-Al2O3 created new Brönsted acid sites with increasing the fluorine content, which resulted in the coexistence of Brönsted and Lewis acid sites, at the same time, strong acid sites appeared. Boron modified γ-Al2O3 catalyst (Al-B1) at 340 °C exhibited excellent catalytic stability and good selectivity for ethanol conversion to ethylene. The improvement in the catalytic stability could be attributed to the lower acidity after boron modification. The results indicated that on γ-Al2O3 catalyst, strong acid sites especially Brönsted acid sites were responsible for coking deactivation and unfavorable to ethanol dehydration to ethylene.

Keywords

γ-Al2O3 Ethanol dehydration Acid sites Ethylene Boron modification 

Notes

Acknowledgements

This work was supported by the National Science Foundation of Jiangsu Province (No. BK20140182), National Natural Science Foundation of China (Nos. 21606252 and 21506247), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    D. Xiang, S. Yang, Z. Mai, Y. Qian, Comparative study of coal, natural gas, and coke-oven gas based methanol to olefins processes in China. Comput. Chem. Eng. 83, 176–185 (2015)CrossRefGoogle Scholar
  2. 2.
    J.F. DeWilde, C.J. Czopinski, A. Bhan, Ethanol dehydration and dehydrogenation on γ-Al2O3: mechanism of acetaldehyde formation. ACS Catal. 4, 4425–4433 (2014)CrossRefGoogle Scholar
  3. 3.
    T.K. Phung, L. Proietti Hernández, A. Lagazzo, G. Busca, Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects. Appl. Catal. A 493, 77–89 (2015)CrossRefGoogle Scholar
  4. 4.
    K. Alexopoulos, M.-S. Lee, Y. Liu, Y. Zhi, Y. Liu, M.-F. Reyniers, G.B. Marin, V.-A. Glezakou, R. Rousseau, J.A. Lercher, Anharmonicity and confinement in zeolites: structure, spectroscopy, and adsorption free energy of ethanol in H-ZSM-5. J. Phys. Chem.C 120, 7172–7182 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Bi, X. Guo, M. Liu, X. Wang, High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts. Catal. Today 149, 143–147 (2010)CrossRefGoogle Scholar
  6. 6.
    J. Bi, M. Liu, C. Song, X. Wang, X. Guo, C2–C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts. Appl. Catal. B 107, 68–76 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Zhang, Y. Yu, Dehydration of ethanol to ethylene. Ind. Eng. Chem. Res. 52, 9505–9514 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Choopun, S. Jitkarnka, Catalytic activity and stability of HZSM-5 zeolite and hierarchical uniform mesoporous MSU-SZSM-5 material during bio-ethanol dehydration. J. Clean. Prod. 135, 368–378 (2016)CrossRefGoogle Scholar
  9. 9.
    W. Xia, F. Wang, X. Mu, K. Chen, A. Takahashi, I. Nakamura, T. Fujitani, Catalytic performance of H-ZSM-5 zeolites for conversion of ethanol or ethylene to propylene: effect of reaction pressure and SiO2/Al2O3 ratio. Catal. Commun. 91, 62–66 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, R. Wang, X. Yang, F. Zhang, Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous Mesoporous Mater. 116, 210–215 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Feng, X. Hu, X. Yan, Z. Yan, M.J. Rood, A high surface area mesoporous γ-Al2O3 with tailoring texture by glucose template for ethanol dehydration to ethylene. Microporous Mesoporous Mater. 241, 89–97 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Xin, X. Li, Y. Fang, X. Yi, W. Hu, Y. Chu, F. Zhang, A. Zheng, H. Zhang, X. Li, Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites. J. Catal. 312, 204–215 (2014)CrossRefGoogle Scholar
  13. 13.
    F. Ferreira Madeira, K. Ben Tayeb, L. Pinard, H. Vezin, S. Maury, N. Cadran, Ethanol transformation into hydrocarbons on ZSM-5 zeolites: influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role., Appl. Catal. A 443–444, 171–180 (2012)CrossRefGoogle Scholar
  14. 14.
    Q. Sheng, K. Ling, Z. Li, L. Zhao, Effect of steam treatment on catalytic performance of HZSM-5 catalyst for ethanol dehydration to ethylene. Fuel Process Technol. 110, 73–78 (2013)CrossRefGoogle Scholar
  15. 15.
    T.K. Phung, G. Busca, Diethyl ether cracking and ethanol dehydration: acid catalysis and reaction paths. Chem. Eng. J. 272, 92–101 (2015)CrossRefGoogle Scholar
  16. 16.
    T.K. Phung, A. Lagazzo, M.Á. Rivero Crespo, V. Sánchez Escribano, G. Busca, A study of commercial transition aluminas and of their catalytic activity in the dehydration of ethanol. J. Catal. 311, 102–113 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Feng, S. Liu, P. Bai, K. Qiao, Y. Wang, H.A. Al-Megren, M.J. Rood, Z. Yan, Preparation and characterization of γ-Al2O3 with rich Brönsted acid sites and its application in the fluid catalytic cracking process. J. Phys. Chem. C 118, 6226–6234 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Feng, X. Yan, X. Hu, K. Qiao, Z. Yan, M.J. Rood, High performance of H3BO3 modified USY and equilibrium catalyst with tailored acid sites in catalytic cracking. Microporous Mesoporous Mater. 243, 319–330 (2017)CrossRefGoogle Scholar
  19. 19.
    L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, C.G. Borsboom, E.J. Mittemeijer, Determination of thickness and composition of aluminium-oxide overlayers on aluminium substrates. Appl. Surf. Sci. 144–145, 11–15 (1999)CrossRefGoogle Scholar
  20. 20.
    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  21. 21.
    C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141, 347–354 (1993)CrossRefGoogle Scholar
  22. 22.
    D. Dambournet, A. Demourgues, C. Martineau, S. Pechev, J. Lhoste, J. Majimel, A. Vimont, J.-C. Lavalley, C. Legein, J.-Y. Buzaré, F. Fayon, A. Tressaud, Nanostructured aluminium hydroxyfluorides derived from β-AlF3. Chem. Mater. 20, 1459–1469 (2008)CrossRefGoogle Scholar
  23. 23.
    P.J. Chupas, D.R. Corbin, V.N.M. Rao, J.C. Hanson, C.P. Grey, A combined solid-state NMR and diffraction study of the structures and acidity of fluorinated aluminas: implications for catalysis. J. Phys. Chem. B 107, 8327–8336 (2003)CrossRefGoogle Scholar
  24. 24.
    F. Dumeignil, M. Rigole, M. Guelton, J. Grimblot, Characterization of boria-alumina mixed oxides prepared by a sol–gel method. Part 2: charaterization of the calcined xerogels. Chem. Mater. 17, 2369–2377 (2005)CrossRefGoogle Scholar
  25. 25.
    I.V. Plyuto, A.P. Shpak, J. Stoch, L.F. Sharanda, Y.V. Plyuto, I.V. Babich, M. Makkee, J.A. Moulijn, XPS characterisation of carbon-coated alumina support. Surf. Interface Anal. 38, 917–921 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Le Bail, C. Jacoboni, M. Leblanc, R. De Pape, H. Duroy, J.L. Fourquet, Crystal structure of the metastable form of aluminum trifluoride β-AlF3 and the gallium and indium homologs. J. Solid State Chem. 77, 96–101 (1988)CrossRefGoogle Scholar
  27. 27.
    W. Zhang, M. Sun, R. Prins, Multinuclear MAS NMR identification of fluorine species on the surface of fluorinated γ-alumina. J. Phys. Chem. B 106, 11805–11809 (2002)CrossRefGoogle Scholar
  28. 28.
    C. Stosiek, G. Scholz, S.L.M. Schroeder, E. Kemnitz, Structure and properties of noncrystalline aluminum oxide-hydroxide fluorides. Chem. Mater. 22, 2347–2356 (2010)CrossRefGoogle Scholar
  29. 29.
    O. Böse, E. Kemnitz, A. Lippitz, W.E.S. Unger, C1s and Au4f7/2 referenced XPS binding energy data obtained with different aluminium oxides, -hydroxides and -fluorides. Fresen. J. Anal. Chem. 358, 175–179 (1997)CrossRefGoogle Scholar
  30. 30.
    P.J. Chupas, C.P. Grey, Surface modification of fluorinated aluminas: application of solid state NMR spectroscopy to the study of acidity and surface structure. J. Catal. 224, 69–79 (2004)CrossRefGoogle Scholar
  31. 31.
    D. Coster, A.L. Blumenfeld, J.J. Fripiat, Lewis acid sites and surface aluminum in aluminas and zeolites: a high-resolution NMR study. J. Phys. Chem. 98, 6201–6211 (1994)CrossRefGoogle Scholar
  32. 32.
    X. Liu, R.E. Truitt, DRFT-IR studies of the surface of γ-alumina. J. Am. Chem. Soc. 119, 9856–9860 (1997)CrossRefGoogle Scholar
  33. 33.
    Y.V. Vatutina, O.V. Klimov, K.A. Nadeina, I.G. Danilova, E.Y. Gerasimov, I.P. Prosvirin, A.S. Noskov, Influence of boron addition to alumina support by kneading on morphology and activity of HDS catalysts. Appl. Catal. B 199, 23–32 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Flego, W.O.N. Parker Jr., Characterization of γ-alumina and borated alumina catalysts. Appl. Catal. A 185, 137–152 (1999)CrossRefGoogle Scholar
  35. 35.
    S.A. El-Hakam, E.A. El-Sharkawy, Structural characterization and catalytic properties of aluminum borates–alumina catalysts. Mater. Lett. 36, 167–173 (1998)CrossRefGoogle Scholar
  36. 36.
    H. Knözinger, P. Ratnasamy, Catalytic aluminas: surface models and characterization of surface sites. Catal. Rev 17, 31–70 (1978)CrossRefGoogle Scholar
  37. 37.
    Y. Han, C. Lu, D. Xu, Y. Zhang, Y. Hu, H. Huang, Molybdenum oxide modified HZSM-5 catalyst: surface acidity and catalytic performance for the dehydration of aqueous ethanol. Appl. Catal. A 396, 8–13 (2011)CrossRefGoogle Scholar
  38. 38.
    A. Corma, A.V. Orchillés, Current views on the mechanism of catalytic cracking. Microporous Mesoporous Mater. 35–36, 21–30 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyChina University of Mining and TechnologyJiangsuChina

Personalised recommendations