Processing, structural and humidity sensing properties of PbTiO3 ceramic synthesized by solid state reaction

Abstract

Perovskite lead titanate PbTiO3 (PT) powder and ceramics were synthesized using solid state reaction technique. The PT single phase powder was detected by X-ray diffraction where the phase obtained by sintering at 700 °C for 2 h. Morphology of the ceramics powder were studied using SEM–EDS. It was found that the particle size tend to increase with increasing sintering temperature. Hot stage microscope has been used to investigate the sintering curve of the calcined powder. The pure calcined powder was prepared as humidity sensors by the screen-printing technique. Thereafter, DC resistance measurements were performed in the presence of relative humidity at room temperature where the powder shows a poor sensitivity towards relative humidity. The phase transition from ferroelectric to paraelectric was identified by differential thermal analysis, and was detected at 493 °C. The difference between using alumina and platinum crucibles during processing has been discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    G. Shirane, S. Hoshino, K. Suzuki, Phys. Rev. 80, 1105 (1950)

    CAS  Article  Google Scholar 

  2. 2.

    D. Shirance, S. Hoshino, J. Phys. Soc. Jpn. 6, 256 (1951)

    Article  Google Scholar 

  3. 3.

    H.D. Megaw, Proc. J. Phys. Soc. (Lond.) 58(Part 2), 133 (1946)

    CAS  Article  Google Scholar 

  4. 4.

    R. Tickoo, R.P. Tandon, K.K. Bamzai, P.N. Kotru, Mater. Sci. Eng. B 103, 145 (2003)

    Article  Google Scholar 

  5. 5.

    B. Jiang, J.L. Peng, L.A. Bursill, W.L. Zhong, J. Appl. Phys. 87, 3462 (2000)

    CAS  Article  Google Scholar 

  6. 6.

    B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971)

    Google Scholar 

  7. 7.

    T. Takahashi, Am. Ceram. Soc. Bull. 69, 691 (1990)

    CAS  Google Scholar 

  8. 8.

    M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectric and Related Materials (Oxford University Press, Oxford, 1979)

    Google Scholar 

  9. 9.

    A. Udomporn, S. Ananta, J. Mater. Lett. 58, 1154 (2004)

    CAS  Article  Google Scholar 

  10. 10.

    M. Alguero, G. Drazic, M. Kosec, M.L. Calzada, L. Pardo, Bol. Soc. Esp. Ceram. Vidri. 41, 98 (1999)

    Article  Google Scholar 

  11. 11.

    J.S. Forrester, J.S. Zobec, D. Phelan, E.H. Kisi, J. Solid State Chem. 177, 3553 (2004)

    CAS  Article  Google Scholar 

  12. 12.

    R. Wongmaneerung, O. Khamman, R. Yimnirun, S. Ananta, J. Electroceram. 21, 798 (2008)

    CAS  Article  Google Scholar 

  13. 13.

    G. Shirane, R. Pepinsky, B.C. Frazer, Acta Crystallogr. 9, 131 (1956)

    CAS  Article  Google Scholar 

  14. 14.

    V.R. Palkar, S.C. Purandare, R. Pinto, J. Mater. Lett. 43, 329 (2000)

    CAS  Article  Google Scholar 

  15. 15.

    S. Ikegami, I. Ueda, T. Nagata, J. Acoust. Soc. Am. 50(4), 1060 (1971)

    CAS  Article  Google Scholar 

  16. 16.

    I. Ueda, Jpn. J. Appl. Phys. 11(4), 450 (1972)

    CAS  Article  Google Scholar 

  17. 17.

    G. King, E.K. Goo, J. Am. Ceram. Soc. 73(6), 1534 (1990)

    CAS  Article  Google Scholar 

  18. 18.

    U. Chaimongkon, A. Thongtha, T. Bongkarn, J. Curr. Appl. Phys. 11, S70 (2011)

    Article  Google Scholar 

  19. 19.

    E.C.S. Tavares, P.S. Pizani, J.A. Eiras, J. Appl. Phys. Lett. 72, 897 (1998)

    CAS  Article  Google Scholar 

  20. 20.

    J. Tartaj, C. Moure, L. Lascano, P. Duran, J. Mater. Res. Bull. 36, 2301 (2001)

    CAS  Article  Google Scholar 

  21. 21.

    X. Zeng, Y. Liu, X. Wang, W. Yin, L. Wang, H. Guo, J. Mater. Chem. Phys. 77, 209 (2002)

    Article  Google Scholar 

  22. 22.

    N. Martin-Arbella, I. Bretos, R. Jimenez, M. Calzada, R. Sirera, J. Am. Ceram. Soc. 94(2), 396 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    D.G. Wang, C.Z. Chen, J. Maa, T.H. Liu, J. Appl. Surf. Sci. 255, 1637 (2008)

    CAS  Article  Google Scholar 

  24. 24.

    M.C. Gelabert, B.L. Gersten, R.E. Riman, J. Cryst. Growth 211, 497 (2000)

    CAS  Article  Google Scholar 

  25. 25.

    Y. Hu, H. Gu, W. Chen, Y. Wang, J. Mater. Chem. Phys. 121, 10 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    S.-B. Cho, J.-S. Noh, M.M. Lenck, R.E. Riman, J. Eur. Ceram. Soc. 23, 2323 (2003)

    CAS  Article  Google Scholar 

  27. 27.

    T. Tabuchi, M. Kondoh, I. Kondoh, N. Tamari, H. Kageyama, J. Am. Ceram. Soc. 83, 541 (2000)

    Google Scholar 

  28. 28.

    A. Leonarskaa, Z. Ujma, A. Molak, J. Ferroelectr. 466, 42 (2014)

    Article  Google Scholar 

  29. 29.

    E.K. Akdogan, C.J. Rawn, W.D. Porter, E.A. Payzant, A. Safari, J. Appl. Phys. 97, 084305 (2005)

    Article  Google Scholar 

  30. 30.

    W.L. Zhong et al., J. Phys. Condens. Matter 5, 2619 (1993)

    CAS  Article  Google Scholar 

  31. 31.

    K. Ishikawa, Jpn. J. Appl. Phys. 35(Part 1), 5196 (1996)

    CAS  Article  Google Scholar 

  32. 32.

    K. Ishikawa, K. Yoshikawa, J. Phys. Rev. B 37, 5852 (1988)

    CAS  Article  Google Scholar 

  33. 33.

    T. Bongkarn, W. Tangkawsakul, Ferroelectrics 383, 50 (2009)

    CAS  Article  Google Scholar 

  34. 34.

    L. Jingbo, L. Wenaoch, Z. Yanxi, W. Zhimin, Sens. Actuators B 75, 11 (2001)

    Article  Google Scholar 

  35. 35.

    J.-M. Tulliani, P. Bonville, Ceram. Int. 31, 507 (2005)

    CAS  Article  Google Scholar 

  36. 36.

    M.K. Jain, M.C. Bhatnagaar, G.L. Sharma, Sens. Actuators B 55, 180 (1999)

    Article  Google Scholar 

  37. 37.

    K.S. Chen, T.K. Lee, F.J. Liu, Sens. Actuators B 55, 96 (1999)

    Google Scholar 

Download references

Acknowledgements

Abd El-razek and A. Afify are grateful for the financial support of Erasmus-Mundus program [EMECW, WELCOME Project Action 2 (scholarship application number WELC1104035 and WELC11011869) respectively, Coordination Office: Politecnico di Torino, Turin, Italy]. Authors are immensely grateful to Dr. A. Mohamed (Chemistry Department, Taibah University, Saudi Arabia) for his comments on an earlier version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abd El-razek Mahmoud.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A.E., Viola, G., Afify, A.S. et al. Processing, structural and humidity sensing properties of PbTiO3 ceramic synthesized by solid state reaction. J Porous Mater 27, 947–958 (2020). https://doi.org/10.1007/s10934-016-0315-8

Download citation

Keywords

  • Lead titanate
  • Phase formation
  • Relative humidity
  • Sintering
  • Solid-state reaction