Advertisement

Journal of Porous Materials

, Volume 24, Issue 2, pp 437–442 | Cite as

Synthesis of MgAPO-31 nanocrystals via different heating methods and their catalytic performance in the hydroisomerization of n-decane

  • Jianwei Zhang
  • Huimin Wu
  • Aijuan Zhao
  • Xuefeng Bai
  • O. V. Kikhtyanin
  • Wei Wu
  • Linfei Xiao
  • Xiaofang Su
  • Rui Zhang
Article

Abstract

MgAPO-31 molecular sieves substituted by different magnesium contents were synthesized using microwave irradiation (MW) and conventional electrical heating method, respectively. The bifunctional catalysts Pd/MgAPO-31 were prepared by the incipient wetness impregnation technique. The structure and acidity of MgAPO-31 were characterized by XRD, SEM, N2 physical adsorption, FT-IR, and Py-IR. The catalytic performance of Pd/MgAPO-31 were tested in the hydroisomerization of n-decane, which was used as the probe-reaction, and the effect of heating method on acidity of MgAPO-31 and the catalytic performance of Pd/MgAPO-31 were investigated. The results showed that all of the MgAPO-31 samples with ATO topology structure were pure phase and high crystalline materials. The Mg(II) heteroatoms were confirmed to isomorphously substitute for the framework atoms of AlPO4-31 molecular sieve. These Pd/MgAPO-31catalysts showed good catalytic performance for the hydroisomerization in the temperature range of 330–370 °C. The activity of Pd/MgAPO-31 in the hydroisomerization of n-decane and the selectivity for i-decanes were considered to depend on the crystal size and acidity of MgAPO-31.The highest selectivity for i-decanes was obtained over the catalyst Pd/0.05MgA31-MW prepared using the MW method.

Keywords

MgAPO-31 molecular sieve Isomorphous substitution Microware irradiation n-Decane Hydroisomerization 

Notes

Acknowledgments

Financially supported by Program of International S&T cooperation (2013DFR40570) and National Natural Science Foundation of China (No. 21411130188, 21276067).

References

  1. 1.
    K.C. Park, S.K. Ihm, Appl. Catal. A Gen. 203, 201 (2000)CrossRefGoogle Scholar
  2. 2.
    K.G. Fang, W. Wei, J. Ren, Y.H. Sun, Catal. Lett. 93, 235 (2004)CrossRefGoogle Scholar
  3. 3.
    L.B. Galperin, Appl. Catal. A. Gen. 209, 257 (2001)CrossRefGoogle Scholar
  4. 4.
    P. Meriaudeau, V.A. Tuan, V.T. Ngheim, C. Naccahe, G. Sapaly, Catal. Today 49, 285 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Li, G. Li, C. Xi, Chem. Res. Chin. U. 20, 131 (2004)Google Scholar
  6. 6.
    S.H. Jhung, T. Jin, Y.H. Kim, Microporous Mesoporous Mater. 109, 58 (2008)CrossRefGoogle Scholar
  7. 7.
    W. Fang, R. Li, T. Dou, Microporous Mesoporous Mater. 84, 116 (2005)CrossRefGoogle Scholar
  8. 8.
    Y. Xiaomei, X. Zhusheng, T. Zhijian, Catal. Lett. 109, 139 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Yang, O.V. Kikhtyanin, W. Wu, Microporous Mesoporous Mater. 150, 14 (2012)CrossRefGoogle Scholar
  10. 10.
    S.H. Jhung, J.S. Chang, J.S. Hwang, S.E. Park, Microporous Mesoporous Mater. 64, 33 (2003)CrossRefGoogle Scholar
  11. 11.
    K. Utchariyajit, S. Wongkasemjit, Microporous Mesoporous Mater. 135, 116 (2010)CrossRefGoogle Scholar
  12. 12.
    S.C. Laha, G. Kamalakar, R. Glser, Microporous Mesoporous Mater. 90, 45 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Gharibeh, G.A. Tompsett, W.C. Conner, Top. Catal. 49, 157 (2008)CrossRefGoogle Scholar
  14. 14.
    C.A. Emies, J. Catal. 141, 347 (1993)CrossRefGoogle Scholar
  15. 15.
    L. Feng, X. Qi, L. Zheng, Chin. J. Catal. 30, 340 (2009)CrossRefGoogle Scholar
  16. 16.
    J.C. Groen, L.A. Peffer, J. Perez-Ramirez, Microporous Mesoporous Mater. 60, 1 (2003)CrossRefGoogle Scholar
  17. 17.
    J. Li, Y. Guo, G. Li, J. Chen, Microporous Mesoporous Mater. 79, 79 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Hui, Y. Jianfeng, K. Xuebin, Z. Lixiong, X. Nanping, Mater. Res. Bull. 44, 956 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jianwei Zhang
    • 1
  • Huimin Wu
    • 1
  • Aijuan Zhao
    • 1
  • Xuefeng Bai
    • 1
  • O. V. Kikhtyanin
    • 2
  • Wei Wu
    • 1
  • Linfei Xiao
    • 1
  • Xiaofang Su
    • 1
  • Rui Zhang
    • 1
  1. 1.International Joint Research Center of Catalytic Technology, Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material SciencesHeilongjiang UniversityHarbinChina
  2. 2.Research Institute of Inorganic ChemistryRENTECH-UniCRELitvínovCzech Republic

Personalised recommendations