Skip to main content
Log in

Mesoporous Pt–Ni catalyst and their electro catalytic activity towards methanol oxidation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous Pt/Ni architecture has been prepared by template assisted electrochemical deposition of Pt–Ni over anodized aluminum oxide template followed by controlled de-alloying with nitric acid. Surface characteristics of the ordered bimetallic mesoporous Pt/Ni structure were systematically characterized through XRD, SEM, AFM and XPS analyses. It is designated by XPS analysis that presence of Ni significantly modifies surface characteristics and electronic states of Pt accompanied with a downshift in the d-band character of Pt. Mesoporous morphology is highly beneficial to offer readily accessible Pt catalytic sites for methanol oxidation reaction. The prepared bimetallic Pt/Ni was used as electro catalyst for DMFC. Comparison of electrocatalytic activity of bimetallic mesoporous Pt/Ni with bimetallic smooth Pt/Ni was interrogated using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy analyses. Distinctly enhanced electrocatalytic activity with improved CO tolerance associated with bimetallic mesoporous Pt/Ni electrode towards methanol oxidation stems from a synergy existing between mesoporous structure with bi-metallic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell. J. Power Sour. 155, 95–110 (2006)

    Article  CAS  Google Scholar 

  2. V. Neburchilov, J. Martin, H. Wang, J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sour. 169, 221–238 (2007)

    Article  CAS  Google Scholar 

  3. S. Mohanapriya, S.D. Bhat, A.K. Sahu, S. Pitchumani, P. Sridhar, A.K. Shukla, A new mixed-matrix membrane for DMFCs. Energy Environ. Sci. 2, 1210–1216 (2009)

    Article  CAS  Google Scholar 

  4. S. Mohanapriya, S.D. Bhat, A.K. Sahu, A. Manokaran, R. Vijayakumar, S. Pitchumani, P. Sridhar, A.K. Shukla, Sodium-alginate-based proton-exchange membranes as electrolytes for DMFCs. Energy Environ. Sci. 3, 1746–1756 (2010)

    Article  CAS  Google Scholar 

  5. T. Iwasita, Erratum to electrocatalysis of methonal oxidation. Electrochim. Acta 47, 3663–3674 (2002)

    Article  CAS  Google Scholar 

  6. V. Radmilovic, H.A. Gasteiger, P.N. Ross, PN Structure and chemical composition of a supported Pt–Ru electrocatalyst for methanol oxidation. J. Catal. 154, 98–106 (1995)

    Article  CAS  Google Scholar 

  7. E. Antolini, J.R.C. Salgado, E.R. Gonzalez, The methanol oxidation reaction on platinum alloys with the first row transition metals: the case of Pt–Co and Pt Ni alloy electrocatalysts for DMFCs. Appl. Catal. B L Environ. 63, 137–149 (2006)

    Article  CAS  Google Scholar 

  8. S. Wasmus, A. Kuver, Methanol oxidation and direct methanol fuel cells. J. Electroanal. Chem. 461, 14–31 (1999)

    Article  CAS  Google Scholar 

  9. T. Iwasita, H. Hoster, A. John-Anacker, W.F. Lin, W. Vielstich, Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt–Ru atom distribution. Langmuir 16, 522–529 (2000)

    Article  CAS  Google Scholar 

  10. K. Wang, H.A. Gasteiger, N.M. Markovic, P.N. Ross, On reaction pathway for methanol and carbon monoxide electro oxidation on Pt–Sn alloy versus Pt–Ru alloy surfaces. Electrochim. Acta 41, 2587–2593 (1996)

    Article  CAS  Google Scholar 

  11. Y. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, C. Cai, Bimetallic Pt–Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. J. Phys. Chem. 13, 4083–4094 (2011)

    CAS  Google Scholar 

  12. X.J. Liu, C.H. Cui, M. Gong, H.H. Li, Y. Xue, F.J. Fan, S.H. Yu, Pt–Ni alloyed nanocrystals with controlled architectures for enhanced methanol oxidation. Chem. Comm. 49, 8704–8706 (2013)

    Article  CAS  Google Scholar 

  13. J. Kua, W.A. Goddard, Oxidation of 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pb, Rh, and Ru): application to direct methanol fuel cells. J. Am. Chem. Soc. 121, 10928–10941 (1999)

    Article  CAS  Google Scholar 

  14. W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun, Q. Xin, Nano-stucture Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim. Acta 49, 1045–1055 (2004)

    Article  CAS  Google Scholar 

  15. X. Cui, J. Shi, L. Zhang, M. Ruan, J. Gao, PtCo supported on ordered mesoporous carbon as anelectrode catalyst for methanol oxidation. Carbon 47, 186–194 (2009)

    Article  CAS  Google Scholar 

  16. Y. Lu, Y. Jiang, W. Chen, Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation. Nanoscale 6, 3309–3315 (2014)

    Article  CAS  Google Scholar 

  17. A.S. Arico, V. Antonucci, N. Giordano, A.K. Shukla, M.K. Ravikumar, A. Roy, S.R. Barman, D.D. Sarma, Methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid. J. Power Sour. 50, 295–309 (1994)

    Article  CAS  Google Scholar 

  18. J. Mathiyarasu, A.M. Remona, A. Mani, K.L.N. Phani, V. Yegnaraman, Exploration ofelectrodeposited platinum alloy catalysts for methanolelectro-oxidation in 0.5 M H2SO4: Pt–Ni system. J. Solid State Electrochem. 8, 968–975 (2009)

    Article  Google Scholar 

  19. P. Thormahlena, M. Skoglundha, E. Fridella, B. Anderssona, Low-temperature CO oxidation over platinum and cobalt oxide catalysts. J. Catal. 188, 300–310 (1999)

    Article  Google Scholar 

  20. H. Yang, W. Vogel, C. Lamy, N.A. Vante, Structure and electrocatalytic activity of carbon-supported Pt–Ni alloy nanoparticles towards oxygen reduction reaction. J. Phys. Chem. B 108, 11024–11034 (2004)

    Article  CAS  Google Scholar 

  21. H. Yanga, C. Coutanceau, J.M. Léger, N.A. Vante, C. Lamy, Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles. J. Electroanal. Chem. 576, 305–313 (2005)

    Article  Google Scholar 

  22. C.H. Cui, H.H. Li, S.H. Yu, Large scale restructuring of porous Pt–Ni nanoparticle tubes for methanol oxidation. Chem. Sci. 2, 1611–1614 (2011)

    Article  CAS  Google Scholar 

  23. R. Zeis, A. Mathur, G. Fritz, J. Lee, J. Erlebacher, Platinum-plated mesoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J. Power Sour. 165, 65–72 (2007)

    Article  CAS  Google Scholar 

  24. L. Liu, E. Pippel, R. Scholz, U. Gösele, Mesoporous Pt–Co alloy nanowires: fabrication and electrocatalytic properties. Nanoletters 13, 5642–5646 (2013)

    Article  Google Scholar 

  25. X. Wang, W. Wang, Z. Qi, C. Zhao, H. Ji, Z. Zhang, High catalytic activity of ultrafine nano porous palladium for electro-oxidation of methanol, ethanol, and formic acid. Electrochem. Commun. 11, 1896–1899 (2009)

    Article  CAS  Google Scholar 

  26. P. Holt-Hindle, Q. Yi, G. Wu, K. Koczkur, A. Chen, Electrocatalytic activity of mesoporous Pt–Ir materials toward methanol oxidation and oxygen reduction. J. Electrochem. Soc. 155, K5–K9 (2008)

    Article  CAS  Google Scholar 

  27. S.M. Kim, L. Liu, S.H. Cho, H.Y. Jang, S. Park, Synthesis of bimetallic Pt/Pd nanotubes and their enhanced catalytic activity in methanol electro-oxidation. J. Mater. Chem. A 1, 15252–15257 (2013)

    Article  CAS  Google Scholar 

  28. V. Raj, J. Silambarasan, P. Rajakumar, Electrocatalytic reduction of ortho nitrobenzaldehyde using modified aluminum electrode and its determination. J. Environ. Sci. 26, 1531–1539 (2014)

    Article  CAS  Google Scholar 

  29. V. Raj, J. Silmabarsan, P. Rajakumar, Application of cobalt oxide nanostructured modified aluminium electrode for electrocatalytic oxidation of guanine and single-strand DNA. RSC Adv. 4, 33874–33882 (2014)

    Article  CAS  Google Scholar 

  30. K.S. Shankar, A.K. Raychaudhuri, Fabrication of nanowires of multicomponent oxides: review of recent advances. Mater. Sci. Eng. C 25, 738–751 (2005)

    Article  Google Scholar 

  31. S. Patra, N. Munichandraiah, Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrateJ. Appl. Polym. Sci. 106, 1160–1171 (2007)

    Article  CAS  Google Scholar 

  32. F. Liu, J.Y. Lee, W. Zhou, Template preparation of multisegment PtNi nanorods as methanol electro-oxidation catalysts with adjustable bimetallic pair sites. J. Phys. Chem. B 108, 17959–17963 (2004)

    Article  CAS  Google Scholar 

  33. Y. Hu, P. Wu, H. Zhang, C. Cai, Synthesis of graphene-supported hollow Pt–Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim. Acta 85, 314–321 (2012)

    Article  CAS  Google Scholar 

  34. C. Xu, J. Hou, X. Pang, X. Li, M. Zhu, B. Tang, Mesoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. Int. J. Hydrog. Energy 37, 10489–10498 (2012)

    Article  CAS  Google Scholar 

  35. T.Y. Jeon, S.J. Yoo, Y.H. Cho, K.S. Lee, S.H. Kang, Y.E. Sung, Influence of oxide on the oxygen reduction of carbon-supported Pt–Ni alloy nano particle. J. Phys. Chem. C 113, 19732–19739 (2009)

    Article  CAS  Google Scholar 

  36. J.R. Kitchin, J.K. Norskov, M.A. Barteau, J.G. Chen, Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004)

    Article  CAS  Google Scholar 

  37. B. Hammer, J.K. Norskov, Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000)

    CAS  Google Scholar 

  38. M.V. Ganduglia-Pirovano, V. Natoli, M.H. Cohen, J. Kudrnovský, I. Turek, Potential, core-level, and d band shifts at transition-metal surfaces. Phys. Rev. B 54, 8892–8898 (1996)

    Article  CAS  Google Scholar 

  39. J. Greeley, J.K. Norskov, M. Mavrikakis, Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 53, 319–348 (2002)

    Article  CAS  Google Scholar 

  40. P. Wu, H. Zhang, Y. Qian, Y. Hu, H. Zhang, C. Cai, Composition and aspect ratio dependent electrocatalytic performances of one dimensional aligned Pt–Ni nanostructures. J. Phys. Chem. C 117, 19091–19100 (2013)

    Article  CAS  Google Scholar 

  41. K.W. Park, J.H. Choi, B.K. Won, S.A. Lee, Y.E. Sung, H.Y. Ha, S.A. Hong, H. Kim, A. Wieckpwski, Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 106, 86977 (2002)

    Article  Google Scholar 

  42. K.W. Park, J.H. Choi, Y.E. Sung, Structural, chemical, and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation. J. Phys. Chem. B 107, 5851–5856 (2003)

    Article  CAS  Google Scholar 

  43. Y. Ishikawa, M.S. Liao, C.R. Cabrera, Oxidation of methanol on platinum, ruthenium and mixed Pt–M Metals (M = Ru, Sn): a theoretical study. Surf. Sci. 463, 66–80 (2000)

    Article  CAS  Google Scholar 

  44. P. Mani, R. Srivastava, P. Strasser, Dealloyed binary PtM3 (M ¼ Cu Co, Ni) and ternary PtNi 3 M (M ¼ Cu Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells. J. Power Sour. 196, 66–73 (2011)

    Article  Google Scholar 

  45. S. Mohanapriya, K. Tintula, S. Bhat, S. Pitchumani, P.A. Sridhar, Novel multi-walled carbon nanotube (MWNT)-based nanocomposite for PEFC electrodes. Bull. Mater. Sci. 3, 297–303 (2012)

    Article  Google Scholar 

  46. T. Binninger, E. Fabbri, R. Kotz, T.J. Schmidt, Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J. Electrochem. Soc. 161, H121–H128 (2014)

    Article  CAS  Google Scholar 

  47. S. Patra, N. Munichandraiah, Electrooxidation of methanol on Pt-modified conductive polymer PEDOT. Langmuir 25, 1732–1738 (2009)

    Article  CAS  Google Scholar 

  48. H. Jiang, B. Geng, L. Kuai, S. Wang, Simultaneous reduction-etching route to Pt/ZnSnO3 hallow polyhedral architectures for methanol electro oxidation in alkaline media with superior performance. Chem. Commun. 47, 2447–2449 (2011)

    Article  CAS  Google Scholar 

  49. M. Jafarian, R.B. Moghaddam, M.G. Mahjani, F. Gobal, Electro-catalytic oxidation of methanol on a Ni–Cu alloy in alkaline medium. J. Appl. Electrochem. 36, 913–918 (2006)

    Article  CAS  Google Scholar 

  50. G. Roslonek, J. Taraszewska, Electrocatalytic oxidation of alcohols on glassy carbon electrodes electrochemically modified with nickel tetraazamacrocyclic complexes: mechanism of film formation. J. Electroanal. Chem. 325, 285–300 (1992)

    Article  CAS  Google Scholar 

  51. A.J. Bard, L.R. Faulkner, Electrochemical methods, chapter 12 (Wiley, Hoboken, 2001)

    Google Scholar 

Download references

Acknowledgments

One of the authors S. Mohanapriya is grateful to University Grants Commission (UGC), Government of India, for providing fund under the scheme of ‘UGC-Dr. D. S. Kothari Post Doctoral Fellowship’ (Ref: No. Award Letter-No. F.4-2/2006 (BSR)/CH/14-15/0102 dated 5-5-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohanapriya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanapriya, S., Suganthi, S. & Raj, V. Mesoporous Pt–Ni catalyst and their electro catalytic activity towards methanol oxidation. J Porous Mater 24, 355–365 (2017). https://doi.org/10.1007/s10934-016-0268-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0268-y

Keywords

Navigation