Journal of Porous Materials

, Volume 24, Issue 2, pp 315–325 | Cite as

Characterization and fluorine-free microwave hydrothermal synthesis of AlPO4-5 molecular sieves as adsorbents

  • Yutang Fang
  • Xueqing Li
  • Xianghui Liang
  • Shuangfeng Wang
  • Xuenong Gao
  • Zhengguo Zhang


With a characteristic of S-shaped water sorption isotherms, AlPO4-5 molecular sieves have been considered as up-and-coming adsorbents for the utilization in adsorptive cooling and heating systems. In order to avoid toxicity and corrosion of fluoride, this paper introduced a fluorine-free microwave hydrothermal synthesis strategy of pure AlPO4-5 crystals. The effects of hydrothermal conditions including template agent, crystallization temperature and time on the performances of AlPO4-5 adsorbents were systematically investigated. Fourier transform infrared spectroscopy, X-ray diffraction (XRD), 27Al and 31P solid state magic angle spinning nuclear magnetic resonance (MAS NMR), pore size analyzer and Scanning electron microscopy (SEM) were used to determine the chemical structure, crystalloid phase, framework, pore structure and the morphology. Adsorption and desorption performances were measured by static adsorption, thermogravimetry and temperature programmed desorption. XRD results indicated that both triethylamine and tetraethylammonium hydroxide as templates, AlPO4-5 crystals could quickly be synthesized within 30–45 min under fluorine-free microwave irradiation. By comparison, the adsorption and desorption performance of the former (recorded as AlPO4-5A) was superior to that of the latter (recorded as AlPO4-5H). FT-IR, MAS NMR and SEM results revealed that AlPO4-5 crystals have the frameworks of alternating AlO4 and PO4 units and typical hexagonal rod-like morphologies.


AlPO4-5 molecular sieve Fluorine-free microwave irradiation Template Adsorption and desorption performance Desorption activated energy 



This work was supported by the National Natural Science Foundation of China [Nos. 51536003, 21471059].


  1. 1.
    F. Meunier, Adsorptive cooling: a clean technology. Clean Prod. Process. 3, 8–20 (2001)CrossRefGoogle Scholar
  2. 2.
    J. Deng, R.Z. Wang, G.Y. Han, A review of thermally activated cooling technologies for combined cooling, heating and power systems. Prog. Energy Combust. Sci. 37, 172–203 (2011)CrossRefGoogle Scholar
  3. 3.
    C.E.L. Nóbrega, N.C.L. Brum, Modeling and simulation of heat and enthalpy recovery wheels. Energy 34, 2063–2068 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Schicktanz, T. Núñez, Modelling of an adsorption chiller for dynamic system simulation. Int. J. Refrig 32, 588–595 (2009)CrossRefGoogle Scholar
  5. 5.
    R. Tu, X.-H. Liu, Y. Jiang, Performance comparison between enthalpy recovery wheels and dehumidification wheels. Int. J. Refrig 36, 2308–2322 (2013)CrossRefGoogle Scholar
  6. 6.
    M.M. Awad, K.A. Ramzy, A.M. Hamed, M.M. Bekheit, Theoretical and experimental investigation on the radial flow desiccant dehumidification bed. Appl. Therm. Eng. 28, 75–85 (2008)CrossRefGoogle Scholar
  7. 7.
    Y.I. Aristov, Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties. J. Chem. Eng. Jpn. 40, 1242–1251 (2007)CrossRefGoogle Scholar
  8. 8.
    Y. Yonezawa, M. Matsushita, K. Oku, H. Nakano, S. Okumura, M. Yshihara, A. Sakai, A. Morikawa, Adsorption refrigeration system, US Patent No. 4881376 (1989)Google Scholar
  9. 9.
    T. Núñez, W. Mittelbach, H.-M. Henning, Development of an adsorption chiller and heat pump for domestic heating and air-conditioning applications. Appl. Therm. Eng. 27, 2205–2212 (2007)CrossRefGoogle Scholar
  10. 10.
    B.B. Saha, A. Chakraborty, S. Koyama, Y.I. Aristov, A new generation cooling device employing CaCl2-in-silica gel–water system. Int. J. Heat Mass Transf. 52, 516–524 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.I. Aristov, Challenging offers of material science for adsorption heat transformation: a review. Appl. Therm. Eng. 50, 1610–1618 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Pons, F. Meunier, G. Cacciola, R.E. Critoph, M. Groll, L. Puigjaner, B. Spinner, F. Ziegler, Thermodynamic based comparison of sorption systems for cooling and heat pumping: comparaison des performances thermodynamique des systèmes de pompes à chaleur à sorption dans des applications de refroidissement et de chauffage. Int. J. Refrig 22, 5–17 (1999)CrossRefGoogle Scholar
  13. 13.
    S. Follin, V. Goetz, A. Guillot, Influence of microporous characteristics of activated carbons on the performance of an adsorption cycle for refrigeration. Ind. Eng. Chem. Res. 35, 2632–2639 (1996)CrossRefGoogle Scholar
  14. 14.
    Z. Tamainot-Telto, S.J. Metcalf, R.E. Critoph, Y. Zhong, R. Thorpe, Carbon–ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping. Int. J. Refrig 32, 1212–1229 (2009)CrossRefGoogle Scholar
  15. 15.
    S.K. Henninger, M. Schicktanz, P.P.C. Hügenell, H. Sievers, H.M. Henning, Evaluation of methanol adsorption on activated carbons for thermally driven chillers part I: thermophysical characterisation. Int. J. Refrig 35, 543–553 (2012)CrossRefGoogle Scholar
  16. 16.
    N. Douss, F. Meunier, Effect of operating temperatures on the coefficient of performance of active carbon–methanol systems. Heat Recovery Syst. CHP 8, 383–392 (1988)CrossRefGoogle Scholar
  17. 17.
    P. Küsgens, M. Rose, I. Senkovska, H. Fröde, A. Henschel, S. Siegle, S. Kaskel, Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 120, 325–330 (2009)CrossRefGoogle Scholar
  18. 18.
    Y. Aristov, Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Therm. Eng. 72, 166–175 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Kakiuchi, S. Shimooka, M. Iwade, K. Oshima, M. Yamazaki, S. Terada, H. Watanabe, T. Takewaki, Novel water vapor adsorbent FAM-Z01 and its applicability to an adsorption heat pump. Kagaku Kogaku Ronbunshu 31, 361–364 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Shimooka, K. Oshima, H. Hidaka, T. Takewaki, H. Kakiuchi, A. Kodama, M. Kubota, H. Matsuda, The evaluation of direct cooling and heating desiccant device coated with FAM. J. Chem. Eng. Jpn. 40, 1330–1334 (2007)CrossRefGoogle Scholar
  21. 21.
    S.K. Henninger, F.P. Schmidt, H.M. Henning, Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30, 1692–1702 (2010)CrossRefGoogle Scholar
  22. 22.
    B.L. Newalkar, R.V. Jasra, V. Kamath, S.G.T. Bhat, Sorption of water in aluminophosphate molecular sieve AlPO4-5. Microporous Mesoporous Mater. 20, 129–137 (1998)CrossRefGoogle Scholar
  23. 23.
    S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 104, 1146–1147 (1982)CrossRefGoogle Scholar
  24. 24.
    J. Caro, F. Marlow, K. Hoffmann, C. Striebel, J. Kornatowski, I. Girnus, M. Noack, P. Kölsch, News from AlPO4-5: microwave synthesis, application as medium to organize molecules for spectroscopy and nonlinear optics, material for one-dimensional membranes, in Studies in Surface Science and Catalysis, vol. 105, ed. by S.-K.I. Hakze Chon, U. Young Sun (Elsevier, Hoboken, 1997), pp. 2171–2178Google Scholar
  25. 25.
    J.M. Bennett, J.P. Cohen, E.M. Flanigen, J.J. Pluth, J.V. Smith, Crystal structure of tetrapropylammonium hydroxide-aluminum phosphate number 5, in Intrazeolite Chemistry. ACS Symposium Series, vol 218 (American Chemical Society, 1983), pp. 109–118Google Scholar
  26. 26.
    S. Xu, Z. Zhao, M.Y. Hu, X. Han, J.Z. Hu, X. Bao, Investigation of water assisted phase transformation process from AlPO4-5 to AlPO4-tridymite. Microporous Mesoporous Mater. 223, 241–246 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Qiu, W. Pang, H. Kessler, J.-L. Guth, Synthesis and structure of the [AlPO4]12 Pr4NF molecular sieve with AFI structure. Zeolites 9, 440–444 (1989)CrossRefGoogle Scholar
  28. 28.
    K. Utchariyajit, S. Wongkasemjit, Structural aspects of mesoporous AlPO4-5 (AFI) zeotype using microwave radiation and alumatrane precursor. Microporous Mesoporous Mater. 114, 175–184 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Mintova, S. Mo, T. Bein, Nanosized AlPO4-5 molecular sieves and ultrathin films prepared by microwave synthesis. Chem. Mater. 10, 4030–4036 (1998)CrossRefGoogle Scholar
  30. 30.
    W. Yang, Y. Song, Y. Mu, S. Zhai, Y. Fu, Q. An, B. Zhai, X. Song, Synthesis and crystal morphology control of AlPO4-5 molecular sieves by microwave irradiation. Solid State Sci. 29, 41–47 (2014)CrossRefGoogle Scholar
  31. 31.
    D.W. Lewis, C.M. Freeman, C.R.A. Catlow, Predicting the templating ability of organic additives for the synthesis of microporous materials. J. Phys. Chem. 99, 11194–11202 (1995)CrossRefGoogle Scholar
  32. 32.
    M.M.J. Treacy, J.B. Higgins (eds.), Collections of Simulated XRD Powder Patterns for Zeolites (Elsevier, Amsterdam, 2001), p. 35Google Scholar
  33. 33.
    C.-M. Chen, J.-M. Jehng, Effect of synthesis pH and H2O molar ratio on the structure and morphology of aluminum phosphate (AlPO-5) molecular sieves. Catal. Lett. 85, 73–80 (2003)CrossRefGoogle Scholar
  34. 34.
    M. Elanany, B.-L. Su, D.P. Vercauteren, Strong templating effect of TEAOH in the hydrothermal genesis of the AlPO4-5 molecular sieve: experimental and computational investigations. J. Mol. Catal. A: Chem. 270, 295–301 (2007)CrossRefGoogle Scholar
  35. 35.
    R.H. Meinhold, N.J. Tapp, An NMR study of the reaction of water with AlPO4-5. J. Chem. Soc., Chem. Commun. 3, 219–220 (1990)CrossRefGoogle Scholar
  36. 36.
    T. Kimura, Y. Sugahara, K. Kuroda, Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents. Chem. Mater. 11, 508–518 (1999)CrossRefGoogle Scholar
  37. 37.
    S.K. Henninger, F. Jeremias, H. Kummer, P. Schossig, H.-M. Henning, Novel sorption materials for solar heating and cooling. Energ. Procedia 30, 279–288 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yutang Fang
    • 1
  • Xueqing Li
    • 1
  • Xianghui Liang
    • 1
  • Shuangfeng Wang
    • 1
  • Xuenong Gao
    • 1
  • Zhengguo Zhang
    • 1
  1. 1.Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of EducationSouth China University of TechnologyGuangzhouChina

Personalised recommendations