Journal of Porous Materials

, Volume 23, Issue 5, pp 1381–1388 | Cite as

Role of SnO2 nanoparticles on mechanical and thermal properties of flexible polyurethane foam nanocomposite

  • Mojtaba Esmailzadeh
  • Habib Danesh Manesh
  • S. Mojtaba Zebarjad


Neat polyurethane (PU) foams and polyurethane/nano tin oxide composites were prepared using in situ polymerization, blending methods. The produced nanocomposites were investigated by scanning electron microscopy, Fourier transform infrared spectra, thermal gravimetric analysis (TGA), and compression test. It was found that modification of tin oxide particles caused to make better distribution in PU foam nanocomposites. The results showed that increasing isocyanate content leading to enhance cross-link, density and compression strength of neat PU foams. Addition of SnO2 nanoparticles in different density of PU foam showed variety effects. In low density foam increasing amount of SnO2 nanoparticles from 0.5 to 1 wt% leaded PU foam to become soft with low strength. Moreover, TGA results of all PU foams exhibited one thermal decomposition step. Also, increasing isocyanate ratio and SnO2 nanoparticles improved thermal stability of PU foams.


Polyurethane foam SnO2 nanoparticle FTIR Variety of density 


  1. 1.
    N. Adam, G. Avar, H. Blankenheim, W. Friederichs, M. Giersig, E. Weigand, M. Halfmann, F.-W. Wittbecker, D.-R. Larimer, U. Maier, S. Meyer-Ahrens, K.-L. Noble, H.-G. Wussow, Polyurethanes, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2000), pp. 545–604Google Scholar
  2. 2.
    M. Sadeghi, M. Mehdi Talakesh, B. Ghalei, M. Shafiei, J. Membr. Sci. 427, 21–29 (2013)CrossRefGoogle Scholar
  3. 3.
    L.M. Chiacchiarelli, I. Puri, D. Puglia, J.M. Kenny, L. Torre, Thermochim. Acta 549, 172–178 (2012)CrossRefGoogle Scholar
  4. 4.
    P. Cinelli, I. Anguillesi, A. Lazzeri, Eur. Polym. J. 49, 1174–1184 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Gunashekar, K.M. Pillai, B.C. Church, N.H. Abu-Zahra, J. Porous Mater. 22, 749–759 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Mahfuz, V.K. Rangari, M.S. Islam, S. Jeelani, Compos. Part A-Appl. Sci. 35, 453–460 (2004)CrossRefGoogle Scholar
  7. 7.
    X. Cao, L. James Lee, T. Widya, C. Macosko, Polymer 46, 775–783 (2005)CrossRefGoogle Scholar
  8. 8.
    J.G. Gwon, S.K. Kim, J.H. Kim, J. Porous Mater. 23, 465–473 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Gunashekar, N. Abu-Zahra, J. Porous Mater. 23(3), 801–810 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Harikrishnan, T.U. Patro, D.V. Khakhar, Ind. Eng. Chem. Res. 45, 7126–7134 (2006)CrossRefGoogle Scholar
  11. 11.
    H.M.M.F. Uddin, S. Zainuddin, S. Jeelani, J. Nanotechnol. 2009, 1–8 (2009)CrossRefGoogle Scholar
  12. 12.
    R. Scipioni, D. Gazzoli, F. Teocoli, O. Palumbo, A. Paolone, N. Ibris, S. Brutti, M.A. Navarra, Membranes 4, 123–142 (2014)CrossRefGoogle Scholar
  13. 13.
    P. Zhao, Y. Wang, J. Zhu, X. Hua, Q. Wen, Sci. China Ser. B 51, 58–61 (2008)CrossRefGoogle Scholar
  14. 14.
    P. Zhao, X. Hua, Y. Wang, J. Zhu, Q. Wen, Mater. Sci. Eng. A-Struct. 457, 231–235 (2007)CrossRefGoogle Scholar
  15. 15.
    C. Zhou, P. Wang, W. Li, Compos. Part B-Eng. 42, 318–325 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Mahfuz, M. Uddin, V. Rangari, M. Saha, S. Zainuddin, S. Jeelani, Appl. Compos. Mater. 12, 193–211 (2005)CrossRefGoogle Scholar
  17. 17.
    A.E. Barrios, J.R.R. Méndez, N.V.P. Aguilar, G.A. Espinosa, J.L.D. Rodríguez, Infrared Spectroscopy—Materials Science, Engineering and Technology, in FTIR—An Essential Characterization Technique for Polymeric Materials, ed. by Th Theophile (InTech, Croatia, 2012), pp. 195–212Google Scholar
  18. 18.
    K.H. Choe, D.S. Lee, W.J. Seo, W.N. Kim, Polym. J. 36, 368–373 (2004)CrossRefGoogle Scholar
  19. 19.
    R. Jahanmardi, B. Kangarlou, A. Dibazar, J. Nanostruct. Chem. 3, 1–6 (2013)CrossRefGoogle Scholar
  20. 20.
    J.G. Gwon, S.K. Kim, J.H. Kim, Mater. Des. 89, 448–454 (2016)Google Scholar
  21. 21.
    L. Verdolotti, M. Lavorgna, R. Lamanna, E. Di Maio, S. Iannace, Polymer 56, 20–28 (2015)CrossRefGoogle Scholar
  22. 22.
    M.E. Kabir, M.C. Saha, S. Jeelani, Mater. Sci. Eng. A-Struct. 459, 111–116 (2007)CrossRefGoogle Scholar
  23. 23.
    H. Janik, M. Sienkiewicz, J. Kucinska-Lipka, H. Dodiuk, S.H. Goodman, 9-Polyurethanes, Handbook of Thermoset Plastics, 3rd edn. (William Andrew Publishing, Boston, 2014), pp. 253–295CrossRefGoogle Scholar
  24. 24.
    M.M. Bernal, M. Martin-Gallego, L.J. Romasanta, A.-C. Mortamet, M.A. Lopez-Manchado, A.J. Ryan, R. Verdejo, Polymer 53, 4025–4032 (2012)CrossRefGoogle Scholar
  25. 25.
    D.-H. Kim, O.-J. Kwon, S.-R. Yang, J.-S. Park, B.C. Chun, Fiber Polym. 8, 155–162 (2007)CrossRefGoogle Scholar
  26. 26.
    A.R. Hamilton, O.T. Thomsen, L.A.O. Madaleno, L.R. Jensen, J.C.M. Rauhe, R. Pyrz, Compos. Sci. Technol. 87, 210–217 (2013)CrossRefGoogle Scholar
  27. 27.
    P.-S. Joanna, C. Bogusław, L. Joanna, J. Porous Mater. 18, 631–638 (2010)CrossRefGoogle Scholar
  28. 28.
    M.L. Pinto, J. Chem. Educ. 87, 212–215 (2010)CrossRefGoogle Scholar
  29. 29.
    D.U. Shah, F. Vollrath, D. Porter, Polymer 56, 93–101 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mojtaba Esmailzadeh
    • 1
  • Habib Danesh Manesh
    • 1
  • S. Mojtaba Zebarjad
    • 1
  1. 1.Department of Materials Science and Engineering, School of EngineeringShiraz UniversityShirazIran

Personalised recommendations