Journal of Porous Materials

, Volume 23, Issue 5, pp 1239–1247 | Cite as

Effect of synthesis highly ordered TiO2 nanotube arrays with enhanced photocatalytic properties by time, electrolytic voltage, heating temperature and Polyvinyl pyrrolidone

  • Shuang Zou
  • Shuang Zhong
  • Chen Lv
  • Chao Wang
  • Tao Chen
  • Zijian Liu
  • Shengyu Zhang


Highly ordered TiO2 nanotube arrays were prepared by anodization method with doped Polyvinyl pyrrolidone (PVP) addition. The as-prepared samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscopy. The results suggested that TiO2 nanotubes arrays modified by 0.10 wt% PVP were better uniform and more highly ordered than that of pure TiO2. The average inner diameter and the tube length of TiO2 nanotubes were extended approximately 77 nm and 5.21 μm, respectively. Meanwhile, the optimum synthesis conditions (40 V, 4 h and 450 °C) were determined by SEM and XRD. In addition, the photocatalytic activity of the as-prepared samples was investigated for the degradation of RhB under UV-lamp irradiation. The results showed that almost 100 % of RhB was degradation within 80 min by the as-prepared nanotubes in the optimum synthesis conditions. It was indicated that the photocatalytic activity of the as-prepared nanotubes was improved greatly due to their well morphology, enhanced UV-light absorption property and electron transmission ability. In general, this study could provide a principle method to synthesize TiO2 nanotube arrays with enhanced photocatalytic activity and improved microstructure by anodization process with PVP addition.


TiO2 nanotube arrays Polyvinyl pyrrolidone Photocatalysis 



The present work was financially supported by National Natural Science Foundation of China (Grant No. 41472214), also funded by Graduate Innovation Fund of Jilin University (No. 2015027) and Jilin Provincial Science & Technology Department (Grant No. 20150204050SF).


  1. 1.
    C.M. Teh, A.R. Mohamed, J. Alloys Compd. 509, 1648 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Enachi, M. Stevens-Kalceff, I. Tiginyanu, V. Ursaki, Mater. Lett. 64, 2155 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Yoriya, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, J. Phys. Chem. C 111, 13770 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Matsuda, S. Sreekantan, W. Krengvirat, J. Am. Ceram. Soc. 1, 203 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Yang, Y. Huang, B. Dong, H.-L. Li, J. Solid State Chem. 178, 1157 (2005)CrossRefGoogle Scholar
  6. 6.
    T.A. Egerton, M. Janus, A.W. Morawski, Chemosphere 63, 1203 (2006)CrossRefGoogle Scholar
  7. 7.
    C. He, X.Z. Li, N. Graham, Y. Wang, Appl. Catal. A 2006(305), 54–63 (2006)CrossRefGoogle Scholar
  8. 8.
    Y. Tang, J. Tao, Y. Zhang, T. Wu, H. Tao, Z. Bao, Acta Phys. Chim. Sin. 24, 2191 (2008)CrossRefGoogle Scholar
  9. 9.
    X. Zeng, Y.X. Gan, E. Clark, L. Su, J. Alloys Compd. 509, 221 (2011)CrossRefGoogle Scholar
  10. 10.
    E. Casbeer, V.K. Sharma, X.-Z. Li, Sep. Purif. Technol. 87, 1 (2012)CrossRefGoogle Scholar
  11. 11.
    H. Dang, X. Dong, Y. Dong, Y. Zhang, S. Hampshire, Int. J. Hydrogen Energy 38, 2126 (2013)CrossRefGoogle Scholar
  12. 12.
    Y.K. Lai, J.Y. Huang, H.F. Zhang, V.P. Subramaniam, Y.X. Tang, D.-G. Gong, L. Sundar, L. Sun, Z. Chen, C.J. Lin, J. Hazard. Mater. 184, 855 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Li, L. Cao, W. Liu, G. Su, B. Dong, Ceram. Int. 38, 5791 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Kumar, M. Chitkara, I. Singh Sandhu, D. Mehta, S. Kumar, Mater. Sci. Semicond. Process. 30, 142 (2015)CrossRefGoogle Scholar
  15. 15.
    K.-S. Chou, Y.-S. Lai, Mater. Chem. Phys. 83, 82 (2004)CrossRefGoogle Scholar
  16. 16.
    M.H. Jung, K.C. Ko, J.Y. Lee, J. Phys. Chem. C 31, 118 (2014)Google Scholar
  17. 17.
    L. Sang, J. Zhang, Y. Zhang, Y. Zhao, J. Lin, SPIE 95600, 95609 (2015)Google Scholar
  18. 18.
    F. Zhao, Q. Lu, S. Liu, C. Zhu, H. Sun, Mater. Lett. 139, 19 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Sreekantan, R. Hazan, Z. Lockman, Thin Solid Films. 518, 16 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Chen, Y. Tang, S. Luo, C. Liu, Y. Li, J. Alloys Compd. 578, 242 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Wang, L. Zhu, M. Wei, P. Chen, G. Shan, Water Res. 845 , 46, (2012)Google Scholar
  22. 22.
    H. Wang, Y. Wu, B.-Q. Xu, Appl. Catal. B 59, 139 (2005)CrossRefGoogle Scholar
  23. 23.
    X. Zhang, S. Lin, J. Liao, N. Pan, D. Li, X. Cao, J. Li, Electrochim. Acta 108, 296 (2013)CrossRefGoogle Scholar
  24. 24.
    C. Shifu, Z. Sujuan, L. Wei, Z. Wei, J. Hazard. Mater. 6, 320 (2008)CrossRefGoogle Scholar
  25. 25.
    F.J. Zhang, F.Z. Xie, J. Liu, W. Zhao, K. Zhang, Ultrason. Sonochem. 20, 209 (2013)CrossRefGoogle Scholar
  26. 26.
    C. Chen, W. Zhao, P. Lei, J. Zhao, N. Serpone, Chem. Eur. J. 10, 1956 (2004)CrossRefGoogle Scholar
  27. 27.
    X. Xu, Y. Ge, B. Li, F. Fan, F. Wang, Mater. Res. Bull. 59, 329 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shuang Zou
    • 1
  • Shuang Zhong
    • 1
  • Chen Lv
    • 1
  • Chao Wang
    • 1
  • Tao Chen
    • 1
  • Zijian Liu
    • 1
  • Shengyu Zhang
    • 2
  1. 1.Key Laboratory of Groundwater Resources and Environment, Ministry of EducationJilin UniversityChangchunChina
  2. 2.Institute of Water Resource and EnvironmentJilin UniversityChangchunChina

Personalised recommendations