Journal of Porous Materials

, Volume 23, Issue 5, pp 1169–1179 | Cite as

The effect of carbonization temperature on the morphology and adsorption of pine-shoot biomorphic porous carbon

  • Mengmeng Wang
  • Songdong Yao
  • Xuejun Xu
  • Liu Pei
  • Haitao Wang
  • Zhigang Fang
  • Deshui Jing
  • Zhewu Zhang


Reactions that occur during the carbonization of pine-shoot may determine the morphology and pore structure of biomorphic porous carbon. This phenomenon has the ability to change the adsorptive performance of biomorphic porous carbon. Individual reactions were separated from the evolution of CO2, CO, CH4, and H2 by using an on-line auto-sampled gas analyzer. Analysis of the structure surface morphology, and the distribution of pores of biomorphic porous carbon in three dimensions was performed through the use of XRD, SEM and polarizing microscopy. The results reveal that the morphology and pore structure of biomorphic porous carbon were significantly influenced by competitive reactions occurring at various temperatures of carbonization. High carbonization temperature favors the formation of well-ordered and penetrable pore channels. Conversely, extra high carbonization temperature may plug the pore-mouth, distort the pore-channels, and destroy the pore-structure of biomorphic porous carbon. Therefore, extra high carbonization temperatures have the ability to prevent small-size adsorbents, such as iodine, methyl blue and thiophenes, from entering into the pore channels of biomorphic porous carbon.


Biomorphic porous carbon Competitive reactions Gas evolution Morphology Carbonization 



This project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (The 47th batch), College students’ innovative entrepreneurial training program of university of science and technology of liaoning (DC2015061) and the Doctoral Start-up Funding at the University of Science and Technology Liaoning, China.


  1. 1.
    C. Pleguezuelo, V. Zuazo, C. Bielders, J. Bocanegra, F. PereaTorres, J. Martínez, Bioenergy farming using woody crops. A review. Agron. Sustain. Dev. 35, 95 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Gutiérrez-Arriaga, M. Serna-González, J. Ponce-Ortega, M. El-Halwagi, Multi-objective optimization of steam power plants for sustainable generation of electricity. Clean Technol. Environ. Policy 15, 551 (2013)CrossRefGoogle Scholar
  3. 3.
    F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497 (2015)CrossRefGoogle Scholar
  4. 4.
    C. Bessou, F. Ferchaud, B. Gabrielle, B. Mary, Biofuels, greenhouse gases and climate change. A review. Agron. Sustain. Dev. 31, 1 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Cao, C.R. Rambo, H. Sieber, Preparation of porous Al2O3-ceramics by biotemplating of wood. J. Porous Mater. 11, 163 (2004)CrossRefGoogle Scholar
  6. 6.
    G. Onyestyak, Pinewood char templated mordenite/carbon honeycomb composite. New J. Chem. 30, 1058 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Neumann, R. Noske, A. Taubert, B. Tiersch, P. Strauch, Highly structured, biomorphous [small beta]-SiC with high specific surface area from equisetaceae. J. Mater. Chem. 22, 9046 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Afanasiev, C. Geantet, I. Llorens, O. Proux, Biotemplated synthesis of highly divided MoS2 catalysts. J. Mater. Chem. 22, 9731 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Ma, W.-W. Liu, S.-W. Zhu, Q. Ma, Y.-S. Fan, B.-J. Cheng, Biotemplated hierarchical TiO2-SiO2 composites derived from Zea mays Linn. for efficient dye photodegradation. J. Porous Mater. 20, 1205 (2013)CrossRefGoogle Scholar
  10. 10.
    Q. Liu, J. Gu, W. Zhang, Y. Miyamoto, Z. Chen, D. Zhang, Biomorphic porous graphitic carbon for electromagnetic interference shielding. J. Mater. Chem. 22, 21183 (2012)CrossRefGoogle Scholar
  11. 11.
    O.P. Chakrabarti, H.S. Maiti, R. Majumdar, Biomimetic synthesis of cellular SiC based ceramics from plant precursor. Bull. Mater. Sci. 27, 467 (2004)CrossRefGoogle Scholar
  12. 12.
    E.V. Parkhomchuk, K.A. Sashkina, N.A. Rudina, N.A. Kulikovskaya, V.N. Parmon, Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites. Catal. Ind. 5, 80 (2013)CrossRefGoogle Scholar
  13. 13.
    C.M.A. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876 (2013)CrossRefGoogle Scholar
  14. 14.
    R.-L. Liu, Y. Liu, X.-Y. Zhou, Z.-Q. Zhang, J. Zhang, F.-Q. Dang, Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue. Bioresour. Technol. 154, 138 (2014)CrossRefGoogle Scholar
  15. 15.
    D. Wang, Y. Min, Y. Yu, Facile synthesis of wheat bran-derived honeycomb-like hierarchical carbon for advanced symmetric supercapacitor applications. J. Solid State Electrochem. 19, 577 (2015)CrossRefGoogle Scholar
  16. 16.
    S.-W. Han, D.-W. Jung, J.-H. Jeong, E.-S. Oh, Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem. Eng. J. 254, 597 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Yu, K. Zhang, N. Tian, A. Qin, L. Liao, R. Du et al., Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries. Mater. Lett. 142, 193 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Du, X. Jiang, G. Lv, X. Li, Y. Chi, J. Yan et al., TG-pyrolysis and FTIR analysis of chocolate and biomass waste. J. Therm. Anal. Calorim. 117, 343 (2014)CrossRefGoogle Scholar
  19. 19.
    C. Kennes, E.R. Rene, M.C. Veiga, Bioprocesses for air pollution control. J. Chem. Technol. Biotechnol. 84, 1419 (2009)CrossRefGoogle Scholar
  20. 20.
    R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 38, 3401 (2009)CrossRefGoogle Scholar
  21. 21.
    B. Ruiz, E. Ruisanchez, R.R. Gil, N. Ferrera-Lorenzo, M.S. Lozano, E. Fuente, Sustainable porous carbons from lignocellulosic wastes obtained from the extraction of tannins. Microporous Mesoporous Mater. 209, 23 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang et al., Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mat. Chem. A 3, 5656 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A. Addou, Methylene blue and iodine adsorption onto an activated desert plant. Bioresour. Technol. 99, 8441 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Gan, N. Tian, X. Tian, L. Ma, W. Wang, C. Yang et al., Adsorption behavior of methylene blue on amine-functionalized ordered mesoporous alumina. J. Porous Mater. 22, 147 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Wen, X. Han, H. Lin, Y. Zheng, W. Chu, A critical study on the adsorption of heterocyclic sulfur and nitrogen compounds by activated carbon: equilibrium, kinetics and thermodynamics. Chem. Eng. J. 164, 29 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781 (2007)CrossRefGoogle Scholar
  27. 27.
    Z. Chen, M. Hu, X. Zhu, D. Guo, S. Liu, Z. Hu et al., Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresour. Technol. 192, 441 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Wang, K.H. Kim, R.C. Brown, Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem. 16, 727 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Zhu, Z. Chen, B. Xiao, Z. Hu, M. Hu, C. Liu et al., Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions. J. Therm. Anal. Calorim. 119, 2269 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Willfor, B. Holmbom, Isolation and characterisation of water soluble polysaccharides from Norway spruce and Scots pine. Wood Sci. Technol. 38, 173 (2004)CrossRefGoogle Scholar
  31. 31.
    D. Shen, R. Xiao, S. Gu, K. Luo, The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. RSC Advances 1, 1641 (2011)CrossRefGoogle Scholar
  32. 32.
    R.P. Giron, R.R. Gil, I. Suarez-Ruiz, E. Fuente, B. Ruiz, Adsorbents/catalysts from forest biomass fly ash. Influence of alkaline activating agent. Microporous Mesoporous Mater. 209, 45 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mengmeng Wang
    • 1
  • Songdong Yao
    • 1
  • Xuejun Xu
    • 2
  • Liu Pei
    • 1
  • Haitao Wang
    • 2
  • Zhigang Fang
    • 1
  • Deshui Jing
    • 1
  • Zhewu Zhang
    • 1
  1. 1.School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan CityChina
  2. 2.Fushun Research Institute of Petroleum and PetrochemicalsSINOPEC, FushunFushun CityChina

Personalised recommendations