Skip to main content
Log in

Modified mesoporous aluminophosphate as an efficient solid acid catalyst for the synthesis of novel O- and N-acetylated compounds: solvent free condition

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Solid acids such as amorphous aluminophosphates (AlP) modified with different transition metals (Fe/Mo/W) were synthesized by either precipitation or co-precipitation methods. These solid acids were characterized by BET, NH3-TPD, PXRD and FT-IR techniques. The catalytic activity of these solid acids was evaluated in the synthesis of novel O- and N-acetylated compounds of various substituted alcohols, phenols, pyridine alcohols, furan alcohols, aryl alcohols and amines under solvent free conditions with acetic anhydride as an acetylating agent. The reaction conditions were optimized by varying the catalyst, molar ratio of the reactants, reaction temperature and amount of the solid acid catalyst. Among the solid acids, FeAlP consisting of 0.025 mol% Fe showed good catalytic activity in the acetylation reaction and produces high yield of acetylated products. In addition, the catalysts can also be reused in acetylation at least for 4 reaction cycles without significance loss of catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

Notes

  1. # Novel acetylated organic compounds

Abbreviations

AA:

Acetic anhydride

4-MPA:

4-Methoxy phenyl acetate

4-MP:

4-Methoxy phenol

References

  1. T.W. Green, P.G.M. Wuts, Protective Groups in Organic Synthesis, 3rd edn. (Wiley, New York, 1999)

    Book  Google Scholar 

  2. G. Bartoli, M. Bosco, R. Dalpozzo, E. Marcantoni, M. Massaccesi, L. Sambri, Eur. J. Org. Chem. 23, 4611 (2003)

    Article  Google Scholar 

  3. S.K. De, Tetrahedron Lett. 45, 2919 (2004)

    Article  Google Scholar 

  4. P. Phukan, Tetrahedron Lett. 45, 4785 (2004)

    Article  CAS  Google Scholar 

  5. M.H. Heravi, F.K. Behbahani, F.F. Bamoharram, J. Mol. Catal. A Chem. 253, 16 (2006)

    Article  CAS  Google Scholar 

  6. M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohamadpoor-Baltork, S.A. Taghavi, J. Mol. Catal. A Chem. 274, 217 (2007)

    Article  CAS  Google Scholar 

  7. A.K. Chakraborti, R. Gulhane, Tetrahedron Lett. 44, 6749 (2003)

    Article  CAS  Google Scholar 

  8. P. Kumar, R.K. Pandey, M.S. Bodas, M.K. Dongare, Synlett 2, 206 (2001)

    Google Scholar 

  9. M.L. Kantam, K. Aziz, P.R. Likhar, Catal. Commun. 7, 484 (2006)

    Article  CAS  Google Scholar 

  10. A.K. Chakraborti, R. Gulhane, Chem. Commun. 15, 1896 (2003)

    Article  Google Scholar 

  11. F. Shirini, M.A. Zolfigol, K. Mohammadi, Bull. Korean Chem. Soc. 25, 325 (2004)

    Article  CAS  Google Scholar 

  12. R. Ballini, G. Bosica, S. Carloni, L. Ciaralli, R. Maggi, G. Sartori, Tetrahedron Lett. 39, 6049 (1998)

    Article  CAS  Google Scholar 

  13. S.P. Chavan, R. Anand, K. Pasupathy, B.S. Rao, Green Chem. 3, 320 (2001)

    Article  CAS  Google Scholar 

  14. K.J. Ratnam, R.S. Reddy, N.S. Sekhar, M.L. Kantam, F. Figueras, J. Mol. Catal. A Chem. 276, 230 (2007)

    Article  CAS  Google Scholar 

  15. X. Zhu, M. Jia, X. Li, G. Liu, W. Zhang, D. Jiang, Appl. Catal. A 282, 155 (2005)

    Article  CAS  Google Scholar 

  16. F.M. Bautista, J.M. Campelo, D. Luna, J.M. Marinas, R.A. Quiros, A.A. Romero, Appl. Catal. B 70, 611 (2007)

    Article  CAS  Google Scholar 

  17. G. Kuriakose, J.B. Nagy, N. Nagaraju, Catal. Comm. 6, 29 (2005)

    Article  CAS  Google Scholar 

  18. M. Hartmann, L. Kevan, Chem. Rev. 99(99), 635 (1999)

    Article  CAS  Google Scholar 

  19. M.J. Climent, A. Corma, V. Fornes, R. Guil-Lopez, S. Iborra, Adv. Synth. Catal. 344, 1090 (2002)

    Article  CAS  Google Scholar 

  20. F.M. Bautista, J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas, A.A. Romero, Appl. Catal. A Gen. 166, 39 (1998)

    Article  CAS  Google Scholar 

  21. F.M. Bautista, J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas, A.A. Romero, Appl. Catal. 104, 109 (1993)

    Article  CAS  Google Scholar 

  22. F.M. Bautista, J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas, A.A. Romero, React. Kinet. Catal. Lett. 57, 61 (1996)

    Article  CAS  Google Scholar 

  23. S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc. 104, 1146 (1982)

    Article  CAS  Google Scholar 

  24. S.T. Wilson, Stud. Surf. Sci. Catal. 58, 137 (1991)

    Article  CAS  Google Scholar 

  25. A.V. Vijayasankar, N. Nagaraju, C. R. Chimie 14, 1109 (2011)

    Article  CAS  Google Scholar 

  26. K. Shyamprasad, S.Z. Mohamed Shamshuddin, V.T. Vasantha, J. Porous Mater. 21, 1079 (2014)

    Article  CAS  Google Scholar 

  27. A. Mamoru, O. Kyoji, Appl. Catal. A 180, 47 (1999)

    Article  Google Scholar 

  28. D. Arias, I. Campos, D. Escalante, J. Goldwasser, C.M. Lopez, F.J. Machado, B. Mendez, D. Moronta, M. Pinto, V. Sazo, M.M.R. de Agudelo, J. Mol. Catal. A. 122, 175 (1997)

    Article  CAS  Google Scholar 

  29. J.M. Campelo, M. Jaraba, D. Luna, R. Luque, J.M. Marinas, A.A. Romero, Chem. Mater. 15, 3352 (2003)

    Article  CAS  Google Scholar 

  30. Janusz Ryczkowski, IR spectroscopy in catalysis. Catal. Today 68, 263 (2001)

    Article  CAS  Google Scholar 

  31. G. Liu, Z. Wang, M. Jia, X. Zou, X. Zhu, W. Zhang, D. Jiang, J. Phys. Chem. B 110, 16953 (2006)

    Article  CAS  Google Scholar 

  32. P. Bonnet, J.M.M. Millet, C. Leclercq, J.C. Vedrine, J. Catal. 158, 128 (1996)

    Article  CAS  Google Scholar 

  33. S.Z. Mohamed Shamshuddin, N. Nagaraju, J. Chem. Sci. 122, 193 (2010)

    Article  CAS  Google Scholar 

  34. K.V.R. Chary, K.R. Reddy, G. Kishan, J.W. Niemantsverdriet, G. Mestl, J. Catal. 226, 283 (2004)

    Article  CAS  Google Scholar 

  35. B.M. Reddy, P.M. Sreekanth, V.R. Reddy, J. Mol. Catal. A 225, 71 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to VGST, GoK (GRD-375), for funding, IISc, Bangalore for providing IR, PXRD, GC–MS data and IITM for NMR and BET analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Mohamed Shamshuddin.

Appendix 1: Spectral data of O- and N-acetylated compounds

Appendix 1: Spectral data of O- and N-acetylated compounds

4-Methylphenyl acetate (Entry 1, Table 2 )

1H NMR (CDCl3, 300 MHz): δ 2.01 (s, 3H), 2.25 (s, 3H), 6.92 (d, 2H, 7.6 Hz), 7.04 (d, 2H, 8.8 Hz). IR (cm−1): 3027, 2953, 1738, 1160, 754. GC–MS m/z: 150 [M]+. Physical state: Clear liquid

4-Methoxyphenyl acetate (Entry 2, Table 2 )

IR (cm−1): 3019, 2960, 1758, 1506, 1217, 1193, 755; 1H NMR (CDCl3, 300 MHz): δ 2.27 (s, 3H), 3.79 (s, 3H), 6.88 (d, 2H, J = 8.8 Hz), 7.00 (d, 2H, J = 9.0 Hz); 13C (CDCl3, 300 MHz): δ 20.58, 55.12, 114.11, 122.03, 143.92, 156.95, 169.61; GC–MS (m/z) 166 (M+), 124 (100).

1-Acetoxy-1-phenyl propane (Entry 3, Table 2 )

IR (neat) 1737 cm−1; 1H NMR (CDCl3, 300 MHz): δ 0.87 (t, 3H, J = 7.38 Hz), 1.73–1.99 (m, 2H), 2.06 (s, 3H), 5.66 (t, 1H, J = 6.86 Hz), 7.28 (m, 5H); 13C (CDCl3, 300 MHz) δ 9.72, 20.99, 29.12, 77.13, 126.38, 127.63, 128.19, 140.39, 170.12; GC–MS (m/z) 178 (M+), 43(100).

4-Bromophenyl acetate (Entry 4, Table 2 )

IR (neat) 1760 cm−1; 1H NMR (CDCl3, 300 MHz) δ 2.29 (s, 3H), 6.97 (d, 2H, J = 8.7 Hz), 7.48 (d, J = 8.1 Hz, 2H); 13C (CDCl3, 300 MHz): δ 20.99, 118.82, 123.34, 132.39, 149.63, 169.02; GC–MS (m/z) 216(M+), 172(100).

2-Methoxy-4-(3-oxobutyl)phenyl acetate # (Entry 5, Table 2 )

BP: 318 0C; 1H NMR (CDCl3, 300 MHz): δ 2.12 (s, 3H), 2.32(s, 3H), 2.81 (t, 2H, 7.4 Hz), 2.88 (t, 2H, 2.4 Hz), 3.89 (s, 3H), 6.87 (d, 1H, J = 4.6 Hz), 6.93 (s, 1H), 7.34 (d, 1H, J = 12 Hz). 13C NMR (CDCl3, 300 MHz): δ 20.55, 30.23, 30.81, 43.53, 56.34, 112.65, 121.76, 124.89, 137.04, 139.40, 152.21, 170.41, 206.39. GC–MS m/z: 234.88 [M]+. Physical state: Liquid.

2, 6, Di-tert-butyl-4-methyl phenyl acetate (Entry 6, Table 2 )

mp 70–74 °C; IR (KBr) 1763 cm−1; 1H NMR (CDCl3, 300 MHz) δ 1.33 (s, 18H), 2.31 (s, 3H), 2.33 (s, 3H), 7.11 (s, 2H); 13C (CDCl3, 300 MHz): δ 21.56, 22.72, 31.49, 35.25, 127.11, 134.60, 141.93, 171.41; GC–MS (m/z) 262 (M+), 43 (100).

O-chlorobenzyl acetate (Entry 7, Table 2 )

1H NMR (CDCl3, 300 MHz): δ 7.38–7.32 (m, 2H), 7.28–7.2 (m, 2H), 5.21 (s, 2H), 2.10 (s, 3H). GC–MS m/z: 184 [M]+.

1-Acetoxy-1-ethynyl cyclohexane (Entry 8, Table 2 )

IR (neat) 1744 cm−1; 1H NMR (CDCl3, 300 MHz) δ 1.63 (m, 6H), 1.81–1.89 (m, 2H), 2.05 (s, 3H), 2.12 (m, 2H), 2.60 (s, 1H); 13C (CDCl3, 300 MHz): δ 21.87, 22.38, 25.03, 36.84, 74.19, 75.04, 83.58, 169.24; GC–MS (m/z) 123 (M-43+), 43(100).

(E)-3-Phenylprop-2-enyl acetate (Entry 9, Table 2 )

1H NMR (CDCl3, 300 MHz): δ 1.98 (s, 3H), 4.60 (t, J = 6.2 Hz, 2H), 6.20–6.22 (m, 1H), 6.54 (d, J = 1.7 Hz, 1H), 7.17–7.30 (m, 5 H). 13C NMR (CDCl3, 300 MHz): δ 20.95, 64.97, 123.77, 126.42, 127.88, 128.42, 133.99, 136.01, 170.55. GC–MS m/z: 175.43 [M]+.

2-Methoxy-4-(prop-2-en-1-yl) phenyl acetate # (Entry 10, Table 2 )

BP: 282 °C; 1H NMR (CDCl3, 300 MHz): δ 2.37 (s, 3H), 3.23 (d, 2H, 7.8 Hz), 3.97 (s, 3H), 5.12–5.5.64(d, 2H, 16 Hz), 5.98 (m, 1H, 8.8 Hz), 6.78 (d, 1H, 7.6 Hz), 6.98 (s, 1H), 7.12 (d, 1H, 12.6 Hz). 13C NMR (CDCl3, 300 MHz): δ 20.33, 39.04, 55.68, 113.76, 115.13, 121.73, 122.51, 136.52, 137.67, 138.90, 151.39, 169.04. GC–MS m/z: 205.53 [M]+. Physical state: Oily Liquid.

Cyclopropyl (phenyl) methyl acetate (Entry 11, Table 2 )

1H NMR (CDCl3, 300 MHz): δ 0.37–0.40 (m, 2H), 0.53–0.59 (m, 2H), 1.32 (m, 1H), 2.08 (s, 3H), 5.22 (d, J = 4 Hz), 7.27–7.39 (m, 5H). 13C NMR (CDCl3, 100 MHz): δ 2.97, 4.04, 16.48, 21.19, 79.57, 126.51, 127.75, 128.27, 140.28, 170.28. GC–MS m/z: 177.53 [M]+.

Pyridine-2-methyl acetate (Entry 12, Table 2 )

1H NMR (CDCl3, 300 MHz): δ 2.13, (s, 3H), 5.19 (s, 2H), 7.20 (d, 1H, J = 1.6 Hz,), 7.31 (d, 1H, J = 1.7 Hz,), 8.56 (d, 1H, J = 4.8 Hz,). 13C NMR (CDCl3, 300 MHz): δ 20.95, 64.97, 123.00, 126.43, 127.88, 128.42, 133.99, 136.01, 170.55. GC–MS m/z: 150.53 [M]+.

Furan-2-ylmethyl acetate (Entry 13, Table 2 )

1H NMR (CDCl3, 300 MHz): δ 2.06 (s, 3H), 5.04 (s, 2H), 6.35 (d, J = 10 Hz, 2H), 7.41 (s, 1H). 13C NMR (CDCl3, 300 MHz): δ 20.73, 57.99, 97.29, 110.50, 143.19, 150.53, 175.95. GC–MS m/z: 139.24 [M]+.

N-(2,3-dimethylphenyl) acetamide # (Entry 14, Table 2 )

M.P: 134 °C; 1H NMR (CDCl3, 300 MHz): δ 2.13, (s, 3H), 2.29 (s, 3H), 2.45(s, 3H), 7.12 (d, 1H, J = 4.7 Hz,), 7.26 (d, 1H, J = 6.8 Hz), 7.32 (dd, 1H, J = 14.2 and 8.6 Hz), 9.45(bs, 1H). 13C NMR (CDCl3, 300 MHz): δ 14.95, 22.81, 24.68, 112.8, 126.18, 126.92, 130.03, 138.92, 139.25, 170.29. GC–MS m/z: 161.2 [M]+. Physical state: solid

N-[3-(trifluoromethyl) phenyl] acetamide # (Entry 15, Table 2 )

M.P: 104 °C; 1H NMR (CDCl3, 300 MHz): δ 2.01 (s, 3H), 7.13 (d, 1H, J = 12 Hz), 7.32 (dd, 1H, J = 14 and 8.8 Hz), 7.63 (d, 1H, J = 6.8 Hz), 8.32(s, 1H). 13C NMR (CDCl3, 300 MHz): δ 24.02, 120.42, 124.09, 124.93, 126.17, 129.03, 132.36, 138.87, 168.78. GC–MS m/z: 202.15 [M]+. Physical state: solid.

N-(4-cyano-3-methylphenyl) acetamide # (Entry 16, Table 2 )

MP: 160 °C; 1H NMR (CDCl3, 300 MHz): δ 2.11 (s, 3H), 2.56 (s, 3H), 7.65 (bs, 1H), 7.43 (d, 1H, J = 8.7 Hz), 7.88 (d, 1H, J = 4.8 Hz), 7.98(s, 1H). 13C NMR (CDCl3, 300 MHz): δ 20.63, 24.82, 110.12, 115.91, 122.15, 122.87, 132.76, 141.53, 142.70, 170.93. GC–MS m/z: 173.49[M]+. Physical state: solid.

N-(4-ethynylphenyl) acetamide # (Entry 17, Table 2 )

MP: 90 °C; 1H NMR (CDCl3, 300 MHz) δ 2.14 (s, 3H), 4.10 (s, 1H), 7.22 (bs, 1H), 7.32 (dd, 1H, J = 8.4 and 1.8 Hz), 7.45(d, 1H, J = 4.8 Hz), 7.63 (d, 1H, J = 1.2 Hz). 13C NMR (CDCl3, 300 MHz): δ 24.12, 80.91, 83.23, 121.9, 122.8, 125.9, 128.1, 129.3, 138.8, 167.8. GC–MS m/z: 156.2 [M]+. Physical state: solid.

N-[4-(bromoacetyl) phenyl] acetamide # (Entry 18, Table 2 )

BP: 429 °C; 1H NMR (CDCl3, 300 MHz): δ 2.08 (s, 3H), 4.87 (s, 2H), 7.32 (bs, 1H), 2.81 (t, 2H, 7.4 Hz), 7.88 (d, 2H, 8 Hz), 7.95 (d, 2H, 7.6 Hz). 13C NMR (CDCl3, 300 MHz): δ 24.15, 31.45, 121.56, 129.83, 131.09, 142.92, 168.09, 191.80. GC–MS m/z: 255.13 [M]+. Physical state: Liquid.

N-(5-bromo-3-nitropyridin-2-yl) acetamide # (Entry 19, Table 2 )

B.P: 418 °C; 1H NMR (CDCl3, 300 MHz): δ 2.01 (s, 3H), 8.75 (s, 1H), 9.30 (bs, 1H), 9.43 (s, 1H). 13C NMR (CDCl3, 300 MHz): δ 24.61, 111.89, 137.12, 137.88, 141.65, 158.09, 169.12. GC–MS m/z: 376.21 [M]+. Physical state: Liquid.

N-(5-nitro-1, 3-thiazol-2-yl) acetamide # (Entry 20, Table 2 )

MP: 202 °C; 1H NMR (CDCl3, 300 MHz): δ 2.01, (s, 3H), 8.22 (s, 1H), 9.76 (bs, 1H). 13C NMR (CDCl3, 300 MHz): δ 24.15, 132.35, 149.58, 163.82, 170.01. GC–MS m/z: 140.7[M]+. Physical state: solid.

N-(9-oxo-9H-fluoren-4-yl) acetamide # (Entry 21, Table 2 )

M.P: 228 °C; 1H NMR (CDCl3, 300 MHz): δ 2.05 (s, 3H), 7.32 (bs, 1H) 7.42 (dd, 1H, J = 8.2 and 2.4 Hz), 7.51 (d, 2H, J = 8 Hz), 7.68 (d, 1H, J = 4.8 Hz), 8.56 (d, 2H, J = 8 Hz). 13C NMR (CDCl3, 300 MHz): δ 24.07, 119.83, 120.13, 122.91, 126.78, 127.86, 130.67, 131.21, 133.13, 134.98, 139.12, 139.78, 145.64, 169.19, 193.43. GC–MS m/z: 236.76 [M]+. Physical state: solid.Footnote 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shyamprasad, K., Mohamed Shamshuddin, S.Z., Shyamsundar, M. et al. Modified mesoporous aluminophosphate as an efficient solid acid catalyst for the synthesis of novel O- and N-acetylated compounds: solvent free condition. J Porous Mater 23, 1095–1105 (2016). https://doi.org/10.1007/s10934-016-0167-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0167-2

Keywords

Navigation