Journal of Porous Materials

, Volume 23, Issue 4, pp 911–917 | Cite as

Zinc(II)porphyrin-poly(lactic acid) nanoporous fiber membrane for ammonia gas detection



A functional zinc(II)porphyrin-poly(lactic acid) nanoporous fiber membrane (Zn(II)TPP-PLA NFM) for ammonia (NH3) gas detection was developed via the one-step electrospinning method. With the porous structure, Zn(II)TPP-PLA NFM overcomes the limited gas absorption and diffusion of the sensing materials and thus is beneficial to NH3 gas detection. FE-SEM and FT-IR were employed to characterize the morphology and structure of the Zn(II)TPP-PLA NFM. NH3 gas sensing properties of the Zn(II)TPP-PLA NFM were studied by UV–visible spectroscopic techniques. Results showed the Zn(II)TPP-PLA NFM with the volume ratio of dichloromethane/tetrahydrofuran (DCM/THF) 4/1 has a relatively higher porosity of 38 % and the Zn(II)TPP-PLA NFM with 2.0 mg mL−1 Zn(II)TPP content exhibits an excellent response/recovery performance toward sub-ppm levels of NH3 gas. The detection limit was found to be 0.264 ppm toward NH3 at room temperature. In addition, the performance of this sensor was highly stable after five cycles of tracing NH3 gas and recovery.


Porous fibers Electrospinning Sensors and actuators Ammonia gas Metalloporphyrin 



This work was supported by National Natural Science Foundation of China (51102178) and National Key Technology Support Program (2015BAE01B03), Innovation Fund for Technology of China (14C26211200298) and Innovation Fund for Technology of Tianjin (14TXGCCX00014).


  1. 1.
    L.Q. Li, P. Gao, M. Baumgarten, K. Mullen, N. Lu, H. Fuchs, L.F. Chi, Adv. Mater. 25, 3419 (2013)CrossRefGoogle Scholar
  2. 2.
    T.W. Sung, Y.L. Lo, Sens. Actuators B: Chem. 188, 702 (2013)CrossRefGoogle Scholar
  3. 3.
    K. Nakagawa, K. Tanaka, T. Kitagawa, Y. Sadaoka, J. Mater. Chem. 8, 1199 (1998)CrossRefGoogle Scholar
  4. 4.
    K. Nakagawa, T. Kitagawa, Y. Sadaoka, Sens. Actuators B: Chem. 52, 10 (1998)CrossRefGoogle Scholar
  5. 5.
    G. De Luca, G. Pollicino, A. Romeo, L.M. Scolaro, Chem. Mater. 18, 2005 (2006)CrossRefGoogle Scholar
  6. 6.
    H. Ogoshi, T. Mizutani, Acc. Chem. Res. 31, 81 (1998)CrossRefGoogle Scholar
  7. 7.
    H. Xu, M.C. Zhang, H.B. Ding, Z.Y. Xie, Microchim. Acta 180, 85 (2013)CrossRefGoogle Scholar
  8. 8.
    K. Garg, A. Singh, C. Majumder, S.K. Nayak, D.K. Aswal, S.K. Gupta, S. Chattopadhyay, Org. Electron. 14, 1189 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Roales, J.M. Pedrosa, M.G. Guillén, T. Lopes-Costa, S.M.A. Pinto, M.J.F. Calvete, M.M. Pereira, Sens. Actuators B: Chem. 210, 28 (2015)CrossRefGoogle Scholar
  10. 10.
    B. Wang, X. Zuo, Y.Q. Wu, Z.M. Chen, C.Y. He, W.B. Duan, Sens. Actuators B: Chem. 152, 191 (2011)CrossRefGoogle Scholar
  11. 11.
    F.W. Lin, X.L. Xu, L.S. Wan, J. Wu, Z.K. Xu, RSC Adv. 5, 30472 (2015)CrossRefGoogle Scholar
  12. 12.
    X.C. Sun, C. Bruckner, M.P. Nieh, Y. Lei, J. Mater Chem A 2, 14613 (2014)CrossRefGoogle Scholar
  13. 13.
    L.C. Jia, W.P. Cai, Adv. Funct. Mater. 20, 3765 (2010)CrossRefGoogle Scholar
  14. 14.
    C. Wolf, M. Tscherner, S. Kostler, Sens. Actuators B: Chem. 209, 1064 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.-Y. Lv, W. Xu, F.-W. Lin, J. Wu, Z.-K. Xu, Sens. Actuators B: Chem. 184, 205 (2013)CrossRefGoogle Scholar
  16. 16.
    Y.-Y. Lv, L.-N. Wang, H.-Y. Wang, D.-Y. Gao, J. Zhejiang Univ. 41, 274 (2012)Google Scholar
  17. 17.
    D.S. Dalavi, N.S. Harale, I.S. Mulla, V.K. Rao, V.B. Patil, I.Y. Kim, J.H. Kim, P.S. Patil, Mater. Lett. 146, 103 (2015)CrossRefGoogle Scholar
  18. 18.
    C.M. Zhang, M.R. Salick, T.M. Cordie, T. Effingham, Y. Dan, L.S. Turng, Mater. Sci. Eng. C Mater. 49, 463 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Li, C.T. Lim, M. Kotaki, Polymer 56, 572 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Zhu, D.Y. Yang, H.W. Ma, Nanoscale 2, 910 (2010)CrossRefGoogle Scholar
  21. 21.
    Z.H. Qi, H. Yu, Y.M. Chen, M.F. Zhu, Mater. Lett. 63, 415 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J.H. Wendorff, Adv. Mater. 13, 70 (2001)CrossRefGoogle Scholar
  23. 23.
    C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Macromolecules 37, 573 (2004)CrossRefGoogle Scholar
  24. 24.
    S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Macromolecules 35, 8456 (2002)CrossRefGoogle Scholar
  25. 25.
    J. Xu, J.H. Zhang, W.Q. Gao, H.W. Liang, H.Y. Wang, J.F. Li, Mater. Lett. 63, 658 (2009)CrossRefGoogle Scholar
  26. 26.
    C. Chen, L.X. Cai, B. Tan, Y.J. Zhang, X.D. Yang, J. Zhang, Chem. Commun. 51, 8189 (2015)CrossRefGoogle Scholar
  27. 27.
    B. Wang, Z.M. Chen, X. Zuo, Y.Q. Wu, C.Y. He, X.L. Wang, Z. Li, Sens. Actuators B: Chem. 160, 1 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Tao, G. Li, Colloid Polym. Sci. 285, 721 (2007)CrossRefGoogle Scholar
  29. 29.
    H. Bai, C. Li, G. Shi, Sens. Actuators B: Chem. 130, 777 (2008)CrossRefGoogle Scholar
  30. 30.
    T.H. Richardson, C.M. Dooling, L.T. Jones, R.A. Brook, Adv. Colloid Interface Sci. 116, 81 (2005)CrossRefGoogle Scholar
  31. 31.
    T. Balaji, M. Sasidharan, H. Matsunaga, Analyst 130, 1162 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of TextileTianjin Polytechnic UniversityTianjinChina
  2. 2.State Key Laboratory of Separation Membranes and Membrane ProcessesTianjinChina

Personalised recommendations