Journal of Porous Materials

, Volume 23, Issue 4, pp 905–910 | Cite as

Diatom frustules as a biomaterial: effects of chemical treatment on organic material removal and mechanical properties in cleaned frustules from two Coscinodiscus species

  • Julien Romann
  • Matilde Skogen Chauton
  • Sidsel M. Hanetho
  • Marius Vebner
  • Mikal Heldal
  • Christian Thaulow
  • Olav Vadstein
  • Gabriella Tranell
  • Mari-Ann Einarsrud


The three-dimensional structure of silica diatom frustules offers a great potential as nanoporous material for several nanotechnological applications, but the starting point for these applications is the ability to obtain clean frustules with sufficient mechanical strength and intact structure. Here, frustules from the diatoms Coscinodiscus centralis Ehrenberg and Coscinodiscus wailesii Gran et Angst are characterized with respect to their structural integrity, content of residual organic biomaterial and their mechanical properties after two cleaning methods using either hydrogen peroxide as oxidizing agent or a combination of a surfactant (sodium dodecyl sulphate) and a complexing agent. Fluorescence microscopy and energy dispersive spectroscopy (SEM/EDS) analysis revealed clear differences regarding the amount of organic residual within the frustules depending on the cleaning process, with little organic material left after the oxidizing method. This method, however, induced a partial cracking of the frustules suggesting an embrittlement due to the cleaning. Nanoindentation confirmed this and showed that the oxidizing method resulted in more brittle frustules compared to the surfactant/complexing method. More efficient cleaning of organic biomaterial may result in more fragile frustules, and the choice of cleaning method must be based on the planned application.


Porous biomaterial Nanomaterial Silica frustules Cleaning protocols Oxidation Surfactant 



The Research Council of Norway is acknowledged for financial support through the SOLBIOPTA Project (Contract #10358700). Egil S. Erichsen, Laboratory for Electron Microscopy, University of Bergen is acknowledged for his help in SEM/EDS analysis.


  1. 1.
    W. Yang, P.J. Lopez, G. Rosengarten, Analyst 136, 42–53 (2011)CrossRefGoogle Scholar
  2. 2.
    R. Gordon, D. Losic, M.A. Tiffany, S.S. Nagy, F.A. Sterrenburg, Trends Biotechnol. 27, 116–127 (2009)CrossRefGoogle Scholar
  3. 3.
    N. Nassif, J. Livage, Chem. Soc. Rev. 40, 849–859 (2011)CrossRefGoogle Scholar
  4. 4.
    D. Losic, Y. Yu, M.S. Aw, S. Simovic, B. Thierry, J. Addai-Mensah, Chem. Commun. 46, 6323–6325 (2010)CrossRefGoogle Scholar
  5. 5.
    D. Losic, G. Rosengarten, J.G. Mitchell, N.H. Voelcker, J. Nanosci. Nanotechnol. 6, 982–989 (2006)CrossRefGoogle Scholar
  6. 6.
    M.S. Aw, S. Simovic, Y. Yu, J. Addai-Mensah, D. Losic, Powder Technol. 223, 52–58 (2012)CrossRefGoogle Scholar
  7. 7.
    P. Gnanamoorthy, S. Anandhan, V.A. Prabu, J. Porous Mater. 21, 789–796 (2014)CrossRefGoogle Scholar
  8. 8.
    R.B. Vasani, D. Losic, A. Cavallaro, N.H. Voelcker et al., J. Mater. Chem. B 3, 4325–4329 (2015)CrossRefGoogle Scholar
  9. 9.
    G.W. Lim, J.K. Lim, A.L. Ahmad, D.J.C. Chan, J. Appl. Phycol. 27, 763–775 (2015)CrossRefGoogle Scholar
  10. 10.
    E. Van Eynde, T. Tytgat, M. Smits, S.W. Verbruggen, B. Hauchecorne, S. Lenaerts, Photochem. Photobiol. Sci. 12, 690–695 (2013)CrossRefGoogle Scholar
  11. 11.
    M.P. Andrews, A. Hajiaboli, J. Hiltz, T. Gonzalez, G. Singh, R.B. Lennox, in Proceedings of SPIE 7946. Photonic and Phononic Properties of Engineered Nanostructures, vol. 7946, pp. 7946S1–7946S12 (2011)Google Scholar
  12. 12.
    L. De Stefano, L. Rotiroti, M. De Stefano, A. Lamberti, S. Lettieri, A. Setaro, P. Maddalena, Biosens. Bioelectron. 24, 1580–1584 (2009)CrossRefGoogle Scholar
  13. 13.
    E. De Tommasi, I. Rea, V. Mocella, L. Moretti, M. De Stefano, I. Rendina, L. De Stefano, Opt. Express 18, 12203–12212 (2010)CrossRefGoogle Scholar
  14. 14.
    M.A. Ferrara, P. Dardano, L. De Stefano, I. Rea, G. Coppola, I. Rendina, R. Congestri, A. Antonucci, M. De Stefano, E. De Tommasi, Plos One 9, e103750 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Romann, J.C. Valmalette, A. Royset, M.A. Einarsrud, Opt. Lett. 40, 740–743 (2015)CrossRefGoogle Scholar
  16. 16.
    K. Kieu, C. Li, Y. Fang, G. Cohoon, O.D. Herrera, M. Hildebrand, K.H. Sandhage, R.A. Norwood, Opt. Express 22, 15992–15999 (2014)CrossRefGoogle Scholar
  17. 17.
    G.A. Cohoon, C.E. Alvarez, K. Meyers, D.D. Deheyn, M. Hildebrand, K. Kieu, R.A. Norwood, in Proceedings of SPIE 9341. Bioinspired, Biointegrated, Bioengineered Photonic Devices III, ed. by L.P. Lee, J.A. Rogers, S.H.A. Yun, vol. 9341 (2015)Google Scholar
  18. 18.
    K.M. Wee, T.N. Rogers, B.S. Altan, S.A. Hackney, C. Hamm, J. Nanosci. Nanotechnol. 5, 88–91 (2005)CrossRefGoogle Scholar
  19. 19.
    N. Kroger, N. Poulsen, Annu. Rev. Genet. 42, 83–107 (2008)CrossRefGoogle Scholar
  20. 20.
    N. Kroger, R. Deutzmann, C. Bergsdorf, M. Sumper, Proc. Natl. Acad. Sci. USA 97, 14133–14138 (2000)CrossRefGoogle Scholar
  21. 21.
    A.E. Ingalls, K. Whitehead, M.C. Bridoux, Geochim. Cosmochim. Acta 74, 104–115 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Sumper, N. Kroger, J. Mater. Chem. 14, 2059–2065 (2004)CrossRefGoogle Scholar
  23. 23.
    E. Brunner, H. Ehrlich, P. Schupp, R. Hedrich, S. Hunoldt, M. Kammer, S. Machill, S. Paasch, V.V. Bazhenov, D.V. Kurek, T. Arnold, S. Brockmann, M. Ruhnow, R. Born, J. Struct. Biol. 168, 539–547 (2009)CrossRefGoogle Scholar
  24. 24.
    B. Tesson and M. Hildebrand, PloS one, 8 (2013)Google Scholar
  25. 25.
    M. Sumper, Science 295, 2430–2433 (2002)CrossRefGoogle Scholar
  26. 26.
    J. Toster, K.S. Iyer, W. Xiang, F. Rosei, L. Spiccia, C.L. Raston, Nanoscale 5, 873–876 (2013)CrossRefGoogle Scholar
  27. 27.
    J. O’Connor, Y. Lang, J.H. Chao, H.L. Cao, L. Collins, B.J. Rodriguez, P. Dockery, D.P. Finn, W.X. Wang, A. Pandit, Small 10, 469–473 (2014)CrossRefGoogle Scholar
  28. 28.
    E. Gultur, M. Guden, J. Achiev. Mater. Manuf. Eng. 46, 196–203 (2011)Google Scholar
  29. 29.
    S. Blanco, I. Alvarez, C. Cejudo, J. Appl. Phycol. 20, 445–450 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Vermeulen, G. Lepoint, S. Gobert, J. Appl. Phycol. 24, 1253–1260 (2012)CrossRefGoogle Scholar
  31. 31.
    L. Friedrichs, Diatom Res. 28, 317–327 (2013)CrossRefGoogle Scholar
  32. 32.
    L.V. Morales, D.M. Sigman, M.G. Horn, R.S. Robinson, Limnol. Oceanogr. Methods 11, 101–112 (2013)CrossRefGoogle Scholar
  33. 33.
    E. Van Eynde, T. Tytgat, M. Smits, S.W. Verbruggen, B. Hauchecorne, S. Lenaerts, Photochem. Photobiol. Sci. 12, 690–695 (2013)CrossRefGoogle Scholar
  34. 34.
    B. Tesson, S. Masse, G. Laurent, J. Maquet, J. Livage, V. Martin-Jezequel, T. Coradin, Anal. Bioanal. Chem. 390, 1889–1898 (2008)CrossRefGoogle Scholar
  35. 35.
    R.R.L. Guillard, Culture of phytoplankton for feeding marine invertebrates, in Culture of Marine Invertebrate Animals, ed. by W.L. Smith, M.H. Chanley (Plenum Press, New York, 1975), pp. 26–60Google Scholar
  36. 36.
    Y.Z. Tang, F.C. Dobbs, Appl. Environ. Microbiol. 73, 2306–2313 (2007)CrossRefGoogle Scholar
  37. 37.
    D.M.M. Kleinegris, M.A. van Es, M. Janssen, W.A. Brandenburg, R.H. Wijffels, J. Appl. Phycol. 22, 645–649 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Michels, M. Büntzow, J. Microsc. 238, 95–101 (2010)CrossRefGoogle Scholar
  39. 39.
    K. Spinde, M. Kammer, K. Freyer, H. Ehrlich, J.N. Vournakis, E. Brunner, Chem. Mater. 23, 2973–2978 (2011)CrossRefGoogle Scholar
  40. 40.
    C.A. Durkin, T. Mock, E.V. Armbrust, Eukaryot. Cell 8, 1038–1050 (2009)CrossRefGoogle Scholar
  41. 41.
    C.J. Lorenzen, Limnol. Oceanogr. 12, 343–346 (1967)CrossRefGoogle Scholar
  42. 42.
    E. Nagababu, F.J. Chrest, J.M. Rifkind, Free Radic Biol. Med. 29(7), 659–663 (2000)CrossRefGoogle Scholar
  43. 43.
    V.V. Dasu, Y. Nakada, M. Ohnishi-Kameyama, K. Kimura, Y. Itoh, Microbiology 152, 2265–2272 (2006)CrossRefGoogle Scholar
  44. 44.
    N. Kröger, C. Bergsdorf, M. Sumper, EMBO J. 13, 4676–4683 (1994)Google Scholar
  45. 45.
    M. Suroy, B. Moriceau, J. Boutorh, M. Goutx, Deep Sea Res. Part I Oceanogr. Res. Pap. 86, 21–31 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Julien Romann
    • 1
  • Matilde Skogen Chauton
    • 4
  • Sidsel M. Hanetho
    • 2
  • Marius Vebner
    • 3
  • Mikal Heldal
    • 5
  • Christian Thaulow
    • 3
  • Olav Vadstein
    • 4
  • Gabriella Tranell
    • 1
  • Mari-Ann Einarsrud
    • 1
  1. 1.Department of Materials Science and EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF Materials and ChemistryTrondheimNorway
  3. 3.Department of Engineering Design and MaterialsNorwegian University of Science and TechnologyTrondheimNorway
  4. 4.Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimNorway
  5. 5.Department of BiologyUniversity of BergenBergenNorway

Personalised recommendations