Journal of Porous Materials

, Volume 23, Issue 4, pp 877–884 | Cite as

Coal based magnetic activated carbon as a high performance adsorbent for methylene blue

  • Shasha Gao
  • Lang Liu
  • Yakun Tang
  • Dianzeng Jia
  • Zongbin Zhao
  • Yaya Wang


Coal based magnetic activated carbons (MACs) were prepared by using the two-stage carbonization and activation of coal in the presence of Fe2O3 as the magnetic source. Compared with the single-stage carbonization and activation, the two-stage temperature method was found to be efficient for the preparation of MACs with the high specific surface area and good magnetic properties in a lower alkali/carbon ratio. The as-synthesized MACs at optimized conditions exhibited specific surface areas of up to 2075 m2/g and optimal saturation magnetization of as high as 15.02 emu/g. Moreover, as an adsorbent, the efficiency of removing methylene blue (MB) from aqueous solutions is excellent. Based on MB adsorption behaviors at various conditions, including initial dye concentration, contact time and temperature, MACs prepared at optimized conditions exhibited a maximum equilibrium MB adsorption capacity of 871 mg/g. The data of adsorption kinetics and isotherms could be well fitted by using the pseudo-second-order equation and the Freundlich model. Importantly, MACs can be separated and recovered easily by applying a magnetic field. Therefore, the coal-based magnetic activated carbons might be a promising candidate of high efficiency, low cost for removal of organic dyes.


Coal Magnetic activated carbons Methylene blue Adsorption 



This work was supported by the excellent Youth Fund of Xinjiang Uygur Autonomous Region of China (2014721005), the Opened Fund of the Key Laboratory of Xinjiang Uygur Autonomous Region of China (2015KL010), the Joint Funds of NSFC- Xinjiang of China (U1303391), the National Natural Science Foundation of China (21362037), the Program for Changjiang Scholars and Innovative Research Team in the University of Ministry of Education of China (IRT1081).

Supplementary material

10934_2016_144_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)


  1. 1.
    R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, H. Huang, Ind. Eng. Chem. Res. 52, 14297–14303 (2013)CrossRefGoogle Scholar
  2. 2.
    B. Han, F. Zhang, Z. Feng, S. Liu, S. Deng, Y. Wang, Y. Wang, Ceram. Int. 40, 8093–8101 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Shao, X. Wang, Y. Kang, Y. Shu, Q. Sun, L. Li, J. Colloid Interface Sci. 429, 25–33 (2014)CrossRefGoogle Scholar
  4. 4.
    J.R. Reddy, S. Kurra, R. Guje, S. Palla, N.K. Veldurthi, G. Ravi, M. Vithaln, Ceram. Int. 41, 2869–2875 (2015)CrossRefGoogle Scholar
  5. 5.
    D.M.D. Araújo, C. Sáez, C.A. Martínez-Huitle, P. Cañizares, M.A. Rodrigo, Appl. Catal. B Environ. 166–167, 454–459 (2015)CrossRefGoogle Scholar
  6. 6.
    E. Brillas, C.A. Martínez-Huitle, Appl. Catal. B Environ. 166–167, 603–643 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Manivel, G.-J. Lee, C.-Y. Chen, J.-H. Chen, S.-H. Ma, T.-L. Horng, J.J. Wu, Mater. Res. Bull. 62, 184–191 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Huang, X. Bo, Y. Zhao, B. Gao, Y. Wang, S. Sun, Q. Yue, Q. Li, Bioresour. Technol. 165, 116–121 (2014)CrossRefGoogle Scholar
  9. 9.
    S.R. Sandeman, V.M. Gun’ko, O.M. Bakalinska, C.A. Howell, Y. Zheng, M.T. Kartel, G.J. Phillips, S.V. Mikhalovsky, J. Colloid Interface Sci. 358, 582–592 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Singla, N. Goel, V. Kumar, S. Singhal, Ceram. Int. 41, 10565–10577 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Zhang, H. Zhang, W. Guo, Y. Tian, Appl. Clay Sci. 93–94, 85–93 (2014)CrossRefGoogle Scholar
  12. 12.
    P. Hadi, M. Xu, C. Ning, C. Sze, Ki Lin, G. McKay. Chem. Eng. J. 260, 895–906 (2015)CrossRefGoogle Scholar
  13. 13.
    Z. Chen, J. Zhang, J. Fu, M. Wang, X. Wang, R. Han, Q. Xu, J. Hazard. Mater. 273, 263–271 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Yenisoy-Karakaş, A. Aygün, M. Güneş, E. Tahtasakal, Carbon 42, 477–484 (2004)CrossRefGoogle Scholar
  15. 15.
    F. Taghizadeh, M. Ghaedi, K. Kamali, E. Sharifpour, R. Sahraie, M.K. Purkait, Powder Technol. 245, 217–226 (2013)CrossRefGoogle Scholar
  16. 16.
    F. Ahmad, W.M.A.W. Daud, M.A. Ahmad, R. Radzi, Chem. Eng. Res. Des. 90, 1480–1490 (2012)CrossRefGoogle Scholar
  17. 17.
    Y. Ao, J. Xu, D. Fu, X. Shen, C. Yuan, Sep. Purif. Technol. 61, 436–441 (2008)CrossRefGoogle Scholar
  18. 18.
    D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco, C.U. Pittman, Chem. Eng. J. 172, 1111–1125 (2011)CrossRefGoogle Scholar
  19. 19.
    B.K. Rai, S.R. Mishra, J. Magn. Magn. Mater. 344, 211–216 (2013)CrossRefGoogle Scholar
  20. 20.
    L. Shao, Z. Ren, G. Zhang, L. Chen, Mater. Chem. Phys. 135, 16–24 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Zhou, S.-J. You, X.-H. Wang, Y. Gan, Y.-J. Zhong, N.-Q. Ren, J. Chem. Technol. Biotechnol. 89, 1051–1059 (2014)CrossRefGoogle Scholar
  22. 22.
    F.-X. Qin, S.-Y. Jia, Y. Liu, X. Han, H.-T. Ren, W.-W. Zhang, J.-W. Hou, S.-H. Wu, Mater. Lett. 101, 93–95 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, S. Xu, Y. Luo, S. Pan, H. Ding, G. Li, J. Mater. Chem. 21, 3664 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Zhao, L. Wang, D. Jia, W. Xia, J. Li, Z. Guo, J. Mater. Chem. A 2, 9338 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Wang, R. Wang, H. Zhao, L. Liu, D. Jia, Mater. Lett. 149, 85–88 (2015)CrossRefGoogle Scholar
  26. 26.
    X. He, R. Li, J. Qiu, K. Xie, P. Ling, M. Yu, X. Zhang, M. Zheng, Carbon 50, 4911–4921 (2012)CrossRefGoogle Scholar
  27. 27.
    X. Wang, P. Zhang, J. Gao, X. Chen, H. Yang, Dyes Pigments 112, 305–310 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Schwickardi, S. Olejnik, E. L. Salabas, W. Schmidt, F. Schuth, Chem. Commun. 38, 3987–3989 (2006)Google Scholar
  29. 29.
    T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441–2449 (2008)CrossRefGoogle Scholar
  30. 30.
    A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Surf. Interface Anal. 36, 1564–1574 (2004)CrossRefGoogle Scholar
  31. 31.
    G. Crini, Bioresour. Technol. 97, 1061–1085 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Ma, F. Yu, L. Zhou, L. Jin, M. Yang, J. Luan, Y. Tang, H. Fan, Z. Yuan, J. Chen, A.C.S. Appl, Mater. Int. 4, 5749–5760 (2012)CrossRefGoogle Scholar
  33. 33.
    E. Haque, J.W. Jun, S.H. Jhung, J. Hazard. Mater. 185, 507–511 (2011)CrossRefGoogle Scholar
  34. 34.
    B.H. Hameed, A.T. Din, A.L. Ahmad, J. Hazard. Mater. 141, 819–825 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Benhouria, M.A. Islam, H. Zaghouane-Boudiaf, M. Boutahala, B.H. Hameed, Chem. Eng. J. 270, 621–630 (2015)CrossRefGoogle Scholar
  36. 36.
    X. Luo, L. Zhang, J. Hazard. Mater. 171, 340–347 (2009)CrossRefGoogle Scholar
  37. 37.
    L. Bai, Z. Li, Y. Zhang, T. Wang, R. Lu, W. Zhou, H. Gao, S. Zhang, Chem. Eng. J. 279, 757–766 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shasha Gao
    • 1
    • 2
  • Lang Liu
    • 1
    • 2
  • Yakun Tang
    • 1
    • 2
  • Dianzeng Jia
    • 2
  • Zongbin Zhao
    • 3
  • Yaya Wang
    • 1
    • 2
  1. 1.School of Chemistry and Chemical EngineeringXinjiang UniversityUrumqiChina
  2. 2.Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied ChemistryXinjiang UniversityUrumqiChina
  3. 3.Carbon Research Laboratory, State Key Lab of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations