Journal of Porous Materials

, Volume 23, Issue 3, pp 783–790 | Cite as

Fabrication and characterization of porous Ti–4Mo alloy for biomedical applications

  • Fangxia Xie
  • Xueming He
  • Jinghu Yu
  • Meiping Wu
  • Xinbo He
  • Xuanhui Qu


Porous Ti–4Mo alloy was prepared by indirect selective laser sintering and investigated with focuses on its porous structure, microstructural characteristic, mechanical properties and corrosion behavior. The results indicate that as the porous alloy is sintered from 1000 to 1200 °C, the pore morphology changes gradually from interconnected to closed pores, meanwhile the porosity level and pore size reduce in the ranges 54–20 % and 103–35 μm, respectively. A laminar microstructure composed of dominant α and minor β phases is observed in pore walls together with slight α precipitations. Elastic modulus and yield strength increase with decreased porosity in the ranges 2.56–10.8 GPa and 47.0–162.4 MPa, respectively. The relationship between the relative mechanical properties and relative density obeys a power law relation. All the polarization curves exhibit an obvious passive characteristic despite different pore features, and the passive film could protect the porous alloy against corrosion in simulated body fluids. Overall, the porous Ti–4Mo alloy may be a potential candidate material for biomedical implants.


Ti–4Mo alloy Selective laser sintering Porous structure Microstructure Mechanical properties Corrosion resistance 



This work was supported by the National Natural Science Foundation of China (51501073, 51375209), Jiangsu Provincial Natural Science Foundation of China (BK20140162), and the Fundamental Research Funds for the Central Universities (JUSRP11455).


  1. 1.
    M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54, 397 (2009)CrossRefGoogle Scholar
  2. 2.
    T.K. Jung, S. Semboshi, N. Masahashi, S. Hanada, Mater. Sci. Eng. C 33, 1629 (2013)CrossRefGoogle Scholar
  3. 3.
    E. Delvat, D.M. Gordin, T. Glorianta, J.L. Duval, M.D. Nagel, J. Mech. Behav. Biomed. Mater. 1, 345 (2008)CrossRefGoogle Scholar
  4. 4.
    T. Lee, Y.U. Heo, C.S. Lee, Scr. Mater. 69, 785 (2013)CrossRefGoogle Scholar
  5. 5.
    S.J. Dai, Y. Wang, F. Chen, Mater. Charact. 104, 16 (2015)CrossRefGoogle Scholar
  6. 6.
    L.H. de Almeida, I.N. Bastos, I.D. Santos, A.J.B. Dutra, C.A. Nunes, S.B. Gabriel, J. Alloy. Compd. 615, S666 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Kumar, T.S. Narayanan, J. Dent. 36, 500 (2008)CrossRefGoogle Scholar
  8. 8.
    G. Bolat, D. Mareci, R. Chelariu, J. Izquierdo, S. González, S.M. Souto, Electrochim. Acta 113, 470 (2013)CrossRefGoogle Scholar
  9. 9.
    Y.L. Zhou, D.M. Luo, J. Alloy. Compd. 509, 6267 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Kumar, T.S. Narayanan, J. Appl. Electrochem. 41, 123 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Mazzoli, Med. Biol. Eng. Comput. 51, 245 (2013)CrossRefGoogle Scholar
  12. 12.
    C.H. Chen, M.Y. Lee, V.B.H. Shyu, Y.C. Chen, C.T. Chen, J.P. Chen, Mater. Sci. Eng. C 40, 389 (2014)CrossRefGoogle Scholar
  13. 13.
    C.J. Shuai, Z.Z. Mao, Z.K. Han, S.P. Peng, J. Bioact. Compat. Pol. 29, 110 (2014)CrossRefGoogle Scholar
  14. 14.
    J.H. Zhou, C.D. Gao, P. Feng, T. Xiao, C.J. Shuai, S.P. Peng, J. Porous Mater. 22, 1171 (2015)CrossRefGoogle Scholar
  15. 15.
    S.L. de Assis, S. Wolynec, I. Costa, Electrochim. Acta 51, 1815 (2006)CrossRefGoogle Scholar
  16. 16.
    I. Gurappa, Mater. Charact. 49, 73 (2002)CrossRefGoogle Scholar
  17. 17.
    O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland, J. Jeanfils, P. Hardouin, D. Landolt, Biomaterials 25, 2695 (2004)CrossRefGoogle Scholar
  18. 18.
    S.F. Hulbert, F.A. Young, R.S. Mathews, J.J. Klawitter, C.D. Talbert, F.H. Stelling, J. Biomed. Mater. Res. 4, 433 (1970)CrossRefGoogle Scholar
  19. 19.
    J.G. Li, H.H. Liao, B. Fartash, L. Hermansson, T. Johnsson, Biomaterials 18, 691 (1997)CrossRefGoogle Scholar
  20. 20.
    H.E. Götz, M. Müller, A. Emmel, U. Holzwarth, R.G. Erben, R. Stangl, Biomaterials 25, 4057 (2004)CrossRefGoogle Scholar
  21. 21.
    A.I. Itälä, H.O. Ylänen, C. Ekholm, K.H. Karlsson, H.T. Aro, J. Biomed. Mater. Res. 58, 679 (2001)CrossRefGoogle Scholar
  22. 22.
    V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)CrossRefGoogle Scholar
  23. 23.
    B.V. Krishna, S. Bose, A. Bandyopadhyay, Acta Biomater. 3, 997 (2007)CrossRefGoogle Scholar
  24. 24.
    P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, Mater. Charact. 96, 273 (2014)CrossRefGoogle Scholar
  25. 25.
    X.H. Min, K. Tsuzaki, S. Emura, T. Nishimura, K. Tsuchiya, Mater. Trans. 52, 1611 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, B.Y. Huang, Mater. Sci. Eng. A 418, 25 (2006)CrossRefGoogle Scholar
  27. 27.
    F.G. Evans, Artif. Limbs 13, 37 (1969)Google Scholar
  28. 28.
    L. Zhang, Y.Q. Zhang, Y.H. Jiang, R. Zhou, Vacuum 122, 187 (2015)CrossRefGoogle Scholar
  29. 29.
    Y.H. Li, R.B. Chen, G.X. Qi, Z.T. Wang, Z.Y. Deng, J. Alloy. Compd. 485, 215 (2009)CrossRefGoogle Scholar
  30. 30.
    Y. Bao, M. Zhang, Y. Liu, J.J. Yao, Z.M. Xiu, M. Xie, X.D. Sun, J. Porous Mater. 21, 913 (2014)CrossRefGoogle Scholar
  31. 31.
    Z. Esen, S. Bor, Scr. Mater. 56, 341 (2007)CrossRefGoogle Scholar
  32. 32.
    X. Rao, C.L. Chu, Y.Y. Zheng, J. Mech. Behav. Biomed. Mater. 34, 27 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Li, X.Y. Ma, Y.F. Feng, L. Wang, C.T. Wang, Compos. Sci. Technol. 117, 78 (2015)CrossRefGoogle Scholar
  34. 34.
    Y.H. Li, G.B. Rao, L.J. Rong, Y.Y. Li, Mater. Lett. 57, 448 (2002)CrossRefGoogle Scholar
  35. 35.
    L. Wu, Y.H. He, Y. Jiang, Y. Zeng, Y.F. Xiao, B. Nan, Trans. Nonferr. Met. Soc. China 24, 3509 (2014)CrossRefGoogle Scholar
  36. 36.
    G.Q. Xie, F.X. Qin, S.L. Zhu, D.V. Louzguine-Lugzin, Intermetallics 44, 55 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fangxia Xie
    • 1
  • Xueming He
    • 1
  • Jinghu Yu
    • 1
  • Meiping Wu
    • 1
  • Xinbo He
    • 2
  • Xuanhui Qu
    • 2
  1. 1.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical EngineeringJiangnan UniversityWuxiChina
  2. 2.Institute of Advanced Materials and Technology, School of Material Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations