Journal of Porous Materials

, Volume 22, Issue 4, pp 1021–1032 | Cite as

Catalytic cracking of 1, 3, 5-triisopropylbenzene over silicoaluminophosphate with hierarchical pore structure

  • Jian Qi
  • Quan Jin
  • Kun Zhao
  • Tianbo Zhao


In order to prepare a highly active catalyst for the catalytic cracking of larger molecules, a novel micro-mesoporous silicoaluminophosphate composite (define as mesoporous SAPO-5) with hierarchical tri-modal pore size distributions has been firstly synthesized via post-synthetic method in acidic condition and subsequently characterized. Morphology control of the composite is attempted by adjusting pH value of the synthetic system. Three different morphologies of composite, including sphere-, rod- and net-like, are obtained in the different conditions. Possible mechanism for the formation of mesoporous SAPO-5 has been proposed. The mesoporous SAPO-5 exhibits higher cracking activity than conventional microporous SAPO-5 for cracking of 1, 3, 5-triisopropylbenzene (1, 3, 5-TIPB) under the same reaction conditions. The result indicates that the mesoporous SAPO-5 with hierarchical pore structure is favorable for catalytic cracking of large molecule. When the cumene as the reaction molecule, the microporous SAPO-5 catalyst exhibits higher conversion in catalytic cracking of cumene compared to the mesoporous SAPO-5, and the result may be attributed to that microporous SAPO-5 has much stronger acidity and specific selectivity than mesoporous SAPO-5 catalyst in catalytic cracking of cumene. Meanwhile, corresponding carbenium ion mechanism can account for the products formed during the whole reaction process.


Catalytic cracking Hierarchical pore structure Silicoaluminophosphate 



This work was supported by the 973 Program under Grant (No. 2003CB615802), the Foundation for State Key Laboratory of Multiphase Complex Systems (No. MPCS-2014-A-04 Y425016124 J. Q.), National Natural Science Foundation of China (No.51302266 Q. J.) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Q. J.).

Supplementary material

10934_2015_9976_MOESM1_ESM.doc (394 kb)
Supplementary material 1 (DOC 394 kb)


  1. 1.
    S.L. Qiu, M. Xue, G.S. Zhu, Chem. Soc. Rev. 43, 6116 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Pires, A. Carvalho, M.B. de Carvaho, Micropor. Mesopor. Mater. 43, 277 (2001)CrossRefGoogle Scholar
  3. 3.
    C.S. Cundy, P.A. Cox, Chem. Rev. 103, 663 (2003)CrossRefGoogle Scholar
  4. 4.
    B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc. 106, 6092 (1984)CrossRefGoogle Scholar
  5. 5.
    N. Danilina, F. Krumeich, J.A. van Bokhoven, J. Catal. 272, 37 (2010)CrossRefGoogle Scholar
  6. 6.
    B. Tang, X.H. Lu, D. Zhou, P. Tian, Z.H. Niu, J.L. Zhang, X. Chen, Q.H. Xia, Catal. Commun. 31, 42 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Hajfarajollah, S. Askari, R. Halladj, React. Kinet. Mech. Catal. 111, 723 (2014)CrossRefGoogle Scholar
  8. 8.
    I.I. Ivanova, E.E. Knyazeva, Chem. Soc. Rev. 42, 3671 (2013)CrossRefGoogle Scholar
  9. 9.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.U. Chu, D.H. Olsen, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  10. 10.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)CrossRefGoogle Scholar
  11. 11.
    C. Perego, R. Millini, Chem. Soc. Rev. 42, 3956 (2013)CrossRefGoogle Scholar
  12. 12.
    Y.H. Li, W. Luo, N. Qin, J.P. Dong, J. Wei, W. Li, S.S. Feng, J.C. Chen, J.Q. Xu, A.A. Elzatahry, M.H. Es-Saheb, Y.H. Deng, D.Y. Zhao, Angew. Chem. Int. Ed. 53, 9035 (2014)CrossRefGoogle Scholar
  13. 13.
    L.X. Jia, X.Y. Sun, X.Q. Ye, C.L. Zou, H.F. Gu, Y. Huang, G.X. Niu, D.Y. Zhao, Micropor. Mesopor. Mater. 176, 16 (2013)CrossRefGoogle Scholar
  14. 14.
    X.M. Zhang, L. Zhang, Q.H. Yang, J. Mater. Chem. A 2, 7546 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Qi, T.B. Zhao, F.Y. Li, G.D. Sun, X. Xu, C. Miao, H.W. Wang, X.M. Zhang, J. Porous Mater. 17, 177 (2010)CrossRefGoogle Scholar
  16. 16.
    M.S. Aghakhani, A.A. Khodadadi, Sh Najafi, Y. Mortazavi, J. Ind. Eng. Chem. 20, 3037 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Qi, T.B. Zhao, X. Xu, F.Y. Li, G.D. Sun, C. Miao, H.W. Wang, Catal. Commun. 10, 1523 (2009)CrossRefGoogle Scholar
  18. 18.
    J.S. Jin, C.Y. Peng, J.J. Wang, H.T. Liu, X.H. Gao, H.H. Liu, C.Y. Xu, Ind. Eng. Chem. Res. 53, 3406 (2014)CrossRefGoogle Scholar
  19. 19.
    A.K. Singh, R. Yadav, A. Sakthivel, Micropor. Mesopor. Mater. 181, 166 (2013)CrossRefGoogle Scholar
  20. 20.
    Y.L. Liu, L.Z. Wanga, J.L. Zhang, L.J. Chen, H.S. Xu, Micropor. Mesopor. Mater. 145, 150 (2011)CrossRefGoogle Scholar
  21. 21.
    K. Utchariyajit, S. Wongkasemjit, Micropor. Mesopor. Mater. 135, 116 (2010)CrossRefGoogle Scholar
  22. 22.
    R. Yadav, A.K. Singh, A. Sakthivel, Chem. Lett. 42, 1160 (2013)CrossRefGoogle Scholar
  23. 23.
    H.Q. Yang, Z.C. Liu, H.X. Gao, Z.K. Xie, J. Mater. Chem. 20, 3227 (2010)CrossRefGoogle Scholar
  24. 24.
    J.Y. Kim, J. Kim, S.T. Yang, W.S. Ahn, Fuel 108, 515 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Suyanta, F.I. Izul, J. Chem. Chem. Eng. 6, 531 (2012)Google Scholar
  26. 26.
    J. Qi, T.B. Zhao, X. Xu, F.Y. Li, G.D. Sun, J. Porous Mater. 18, 69 (2011)CrossRefGoogle Scholar
  27. 27.
    W.S. Yang, B.Q. Zhang, X.F. Liu, Micropor. Mesopor. Mater. 117, 391 (2009)CrossRefGoogle Scholar
  28. 28.
    K.H. Schnabel, G. Finger, J. Kornatowski, E. Löffler, C. Peuker, W. Pilz, Micropor. Mater. 11, 293 (1997)CrossRefGoogle Scholar
  29. 29.
    H. Aguiar, J. Serra, P. González, B. León, J. Non-Cryst, Solids 355, 475 (2009)Google Scholar
  30. 30.
    K.M. Davis, M. Tomozawa, J. Non-Cryst, Solids. 201, 177 (1996)Google Scholar
  31. 31.
    R.M. Susarrey-Arce, R.G.P. Tiggelaar, B. Sanders, L. Geerdink, J.G.E. Lefferts, A. Gardeniers, van Houselt, J. Phys. Chem. C 117, 21936 (2013)CrossRefGoogle Scholar
  32. 32.
    E.M. Flanigen, H. Khatami, H.A. Szymanski, Adv. Chem. Ser. 101, 201 (1971)CrossRefGoogle Scholar
  33. 33.
    Y.F. Yeong, A.Z. Abdullah, A.L. Ahmad, S. Bhatia, Micropor. Mesopor. Mater. 123, 129 (2009)CrossRefGoogle Scholar
  34. 34.
    M.T. Zhao, K. Deng, L.C. He, Y. Liu, G.D. Li, H.J. Zhao, Z.Y. Tang, J. Am. Chem. Soc. 136, 1738 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Xu, C. Lin, H.A. Liu, H.B. Yu, K. Tao, S.H. Zhou, RSC Adv. 5, 23981 (2015)CrossRefGoogle Scholar
  36. 36.
    K. Zhao, J. Qi, S.L. Zhao, H.J. Tang, H.J. Yin, L.B. Zong, L. Chang, Y. Gao, R.B. Yu, Z.Y. Tang, Chin. J. Catal. 36, 261 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Qi, K. Zhao, G.D. Li, Y. Gao, H.J. Zhao, R.B. Yu, Z.Y. Tang, Nanoscale 6, 4072 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Qi, J. Chen, G.D. Li, S.X. Li, Y. Gao, Z.Y. Tang, Energy Environ. Sci. 5, 8937 (2012)CrossRefGoogle Scholar
  39. 39.
    L. Zhu, F.S. Xiao, Z.T. Zhang, Y.Y. Sun, Y. Han, S.L. Qiu, Catal. Today 68, 209 (2001)CrossRefGoogle Scholar
  40. 40.
    J. Xiao, J. Wei, Chem. Eng. Sci. 47, 1123 (1992)CrossRefGoogle Scholar
  41. 41.
    R.R. Xu, W.Q. Pang, J.H. Yu, Q.S. Huo, J.S. Chen, Chemistry-Zeolites and Porous Materials, 1st edn. (Science Press, Beijing, 2004)Google Scholar
  42. 42.
    B. Adnadjevic, J. Vulkicevic, Z. Filipovic-Rojka, V. Markovic, Zeolites 10, 699 (1990)CrossRefGoogle Scholar
  43. 43.
    M.R. Sazegar, A.A. Jalil, S. Triwahyono, R.R. Mukti, M. Aziz, M.A.A. Aziz, H.D. Setiabudi, N.H.N. Kamarudin, Chem. Eng. J. 240, 352 (2014)CrossRefGoogle Scholar
  44. 44.
    L.P. Liu, F.Y. Jin, G. Xiong, H.Y. Long, X.S. Wang, J. Porous Mater. 20, 637 (2013)CrossRefGoogle Scholar
  45. 45.
    S. Al-Khattaf, H. de Lasa, Appl. Catal. A Gen. 226, 139 (2002)CrossRefGoogle Scholar
  46. 46.
    N.H.R. Annuara, A.A. Jalil, S. Triwahyono, N.A.A. Fatah, L.P. Teh, C.R. Mamat, Appl. Catal. A Gen. 475, 487 (2014)CrossRefGoogle Scholar
  47. 47.
    H. Konno, T. Tago, Y. Nakasaka, G. Watanabe, T. Masuda, Appl. Catal. A Gen. 475, 127 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.The Institute for Chemical PhysicsBeijing Institute of TechnologyBeijingPeople’s Republic of China
  3. 3.Department of Physical Chemistry, School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations