Advertisement

Journal of Porous Materials

, Volume 22, Issue 4, pp 959–963 | Cite as

Solvothermal synthesis of mesoporous TiO2 microspheres with tailored pore size and specific surface area

  • Yajing Zhang
  • Yuan Zhu
  • Kangjun Wang
  • Fu Ding
  • Dan Meng
  • Xiaolei Wang
  • Jing Wu
Article

Abstract

Mesoporous TiO2 microspheres with high specific surface area were synthesized by a template-free solvothermal method with the aid of urea. The phase structure, morphology, pore and optical properties were characterized by XRD, SEM, N2 adsorption–desorption and UV–Vis diffuse reflectance spectra. By controlling the urea concentration, size, specific surface area, pore size and optical property of the mesoporous TiO2 microspheres can be tuned.

Keywords

Template-free Mesoporous TiO2 microspheres 

Notes

Acknowledgments

The authors thank National Nature Science Foundation of China (51301114, 21201123, 21203125, 61403263), Liaoning Science and Technology Department Foundation (No. 2007223016), Liaoning Educational Department Foundation (L2013161), LNET (LJQ2013044) for financial support. F. Ding acknowledges Chinese Scholarship Council ([2012]5031) for the financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10934_2015_9969_MOESM1_ESM.docx (94 kb)
Supplementary material 1 (DOCX 93 kb)

References

  1. 1.
    J.Y. Cho, W.H. Nam, Y.S. Lim et al., RSC Adv 2, 2449 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Wold, Chem. Mater. 5, 280 (1993)CrossRefGoogle Scholar
  3. 3.
    Z. Zhao, Z. Sun, H. Zhao et al., J. Mater. Chem. 22, 21965 (2012)CrossRefGoogle Scholar
  4. 4.
    Z.M. He et al., J. Mater. Chem. C 2, 1381 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Rui, Y. Li, Q. Zhang, H. Wang et al., CrystEngComm 15, 1651 (2013)CrossRefGoogle Scholar
  6. 6.
    B. Liu, L.M. Liu, X.F. Lang et al., Energy Environ. Sci. 7, 2592 (2014)CrossRefGoogle Scholar
  7. 7.
    H.Y. Wang, J.Z. Chen, S. Hy et al., Nanoscale 6, 14926 (2014)CrossRefGoogle Scholar
  8. 8.
    P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008)CrossRefGoogle Scholar
  9. 9.
    Z.Y. Gao, Z.L. Wu, X.M. Li et al., CrystEngComm 15, 3351 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Zhao, X.X. Zou, J. Su et al., Dalton Trans. 42, 4365 (2013)CrossRefGoogle Scholar
  11. 11.
    X.H. Miao, K. Pan, Y.P. Liao et al., J. Mater. Chem. A 1, 9853 (2013)CrossRefGoogle Scholar
  12. 12.
    Z.H. Bi, M.P. Paranthaman, B. Guo et al., J. Mater. Chem. A 2, 1818 (2014)CrossRefGoogle Scholar
  13. 13.
    N.I. Ermokhina, V.A. Nevinskiy, P.A. Manorik et al., Mater. Lett. 75, 68 (2013)CrossRefGoogle Scholar
  14. 14.
    X.Y. Zhang, Y.J. Sun, X.L. Cui et al., Int. J. Hydrogen Energy 37, 13568 (2012)Google Scholar
  15. 15.
    C. Zurmühl, R. Popescu, D. Gerthsen et al., Solid State Sci. 13, 1505 (2011)CrossRefGoogle Scholar
  16. 16.
    J.K. Liu, T.C. An, G.Y. Li et al., Microporous Mesoporous Mater. 124, 197 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.X. Zhang, H.H. Zheng, G. Liu et al., Electrochim. Acta 16, 4079 (2009)CrossRefGoogle Scholar
  18. 18.
    Y.B. Liu, T.B. Lan, W.F. Zhang et al., J. Mater. Chem. A 2, 20133 (2014)CrossRefGoogle Scholar
  19. 19.
    W.J. Zhou et al., CrystEngComm 13, 4557 (2011)CrossRefGoogle Scholar
  20. 20.
    T.B. Lan, Y.B. Liu, J. Dou et al., J. Mater. Chem. A 2, 1102 (2014)CrossRefGoogle Scholar
  21. 21.
    K. He, G.L. Zhao, G.R. Han, CrystEngComm 16, 7881 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. J. Zhang, S. J. Zhang, K. J. Wang, J. Nanomater. Article ID 294020 (2013)Google Scholar
  23. 23.
    B. Xue, T. Sun, F. Mao, Mater. Res. Bull. 46, 1424 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Thommes, Chem. Ing. Tech. 82, 1059 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Sakulkhaemaruethai, T. Sreethawong, Int J Hydrogen Energy 36, 6553 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Ma, G. Ji, B. Ding, J.Y. Lee, J. Mater. Chem. 22, 24380 (2012)CrossRefGoogle Scholar
  27. 27.
    T. Sreethawong, S. Ngamsinlapasathian, S. Yoshikawa, Mater. Res. Bull. 48, 30 (2013)CrossRefGoogle Scholar
  28. 28.
    H.J. Zhang, R.F. Wu, Z.W. Chen et al., CrystEngComm 14, 1775 (2012)CrossRefGoogle Scholar
  29. 29.
    L.H. Kao, T.C. Hsu, H.Y. Lu, J. Colloid Interface Sci. 316, 160 (2007)CrossRefGoogle Scholar
  30. 30.
    K. Di, Y.H. Zhu, X.L. Yang, C.Z. Li, Colloids Surf. A Physicochem. Eng. Asp. 280, 71 (2006)CrossRefGoogle Scholar
  31. 31.
    S.J. Ding, F.Q. Huang, X.L. Mou et al., J. Mater. Chem. 21, 4888 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Chemical EngineeringShenyang University of Chemical TechnologyShenyangPeople’s Republic of China
  2. 2.School of ScienceShenyang University of TechnologyShenyangPeople’s Republic of China
  3. 3.Liaoning Co-innovation Center of Fine Chemical IndustryShenyangPeople’s Republic of China

Personalised recommendations