Journal of Porous Materials

, Volume 22, Issue 3, pp 629–634 | Cite as

SO3H-functionalized hollow mesoporous carbon sphere prepared by simultaneously achieving sulfonation and hollow structure

  • Binbin Chang
  • Yanchun Li
  • Yanzhen Guo
  • Hang Yin
  • Shouren Zhang
  • Baocheng Yang


SO3H-functionalized hollow mesoporous carbon sphere (HMCS–SO3H) was successfully synthesized via a facile strategy using inexpensive resins as precursor in combination with metal oxide template. By the one-step thermal treatment with sulfuric acid, it simultaneously achieved the formation of hollow spherical structure and sulfonation functionalization. HMCS–SO3H catalyst possessed superior mesoporosity, uniform sphere morphology and high acidity, which endowed it excellently catalytic property for esterification of oleic acid. In addition, HMCS–SO3H exhibited prominent stability and reusability.


Carbon materials Mesoporous Hollow sphere Sulfonation 



The authors gratefully acknowledge the financial support from the program for New Century Excellent Talents in University (NCET-12-0696), the Leading Talents for Zhengzhou Science and Technology Bureau (Grant No. 131PLJRC649), the program for University Innovative Talents of Science and Technology in Henan Province (Grant No. 2012HASTIT03), National Natural Science Foundation of China (51472102).


  1. 1.
    M. Hara, Energy Environ. Sci. 3, 601 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 130, 12787 (2008)CrossRefGoogle Scholar
  3. 3.
    R. Liu, X.Q. Wang, X. Zhao, P.Y. Feng, Carbon 46, 1664 (2008)CrossRefGoogle Scholar
  4. 4.
    B.B. Chang, J. Fu, Y.L. Tian, X.P. Dong, RSC Adv. 3, 1987 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Tang, J. Liu, C.L. Li, Y.Q. Li, M.O. Tade, S. Dai, Y. Yamauchi, Angew. Chem. Int. Ed. 54, 588 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Tang, J. Liu, N.L. Torad, T. Kimura, Y. Yamauchi, Nano Today 9, 305 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Tang, N.L. Torad, R.R. Salunkhe, J.H. Yoon, M.S.A. Hossain, S.X. Dou, J.H. Kim, T. Kimura, Y. Yamauchi, Chem-Asian J. 9, 3238 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.D. Xia, Z.X. Yang, R. Mokaya, J. Phys. Chem. B 108, 19293 (2004)CrossRefGoogle Scholar
  9. 9.
    B.B. Chang, W.W. Shi, D.X. Guan, Y.L. Wang, B.C. Zhou, X.P. Dong, Mater. Lett. 126, 13 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Wang, J. Zhang, S. Yang, Q. Sun, L.F. Zhu, Q.M. Wu, H.Y. Zhang, X.J. Meng, F.S. Xiao, J. Mater. Chem. A 1, 9422 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.F. Zhu, E. Kockkrick, T. Ikoma, N. Hanagata, S. Kaskel, Chem. Mater. 21, 2547 (2009)CrossRefGoogle Scholar
  12. 12.
    X.B. Zhang, H.W. Tong, S.M. Liu, G.P. Yong, Y.F. Guan, J. Mater. Chem. A 1, 7488 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Hara, T. Yoshida, A. Takagaki, T. Takata, J.N. Kondo, K. Domen, S. Hayashi, Angew. Chem. Int. Ed. 43, 2955 (2004)CrossRefGoogle Scholar
  14. 14.
    B. Du, X. Zhang, L.L. Lou, Y.L. Dong, G.X. Liu, S.X. Liu, Appl. Surf. Sci. 258, 7166 (2012)CrossRefGoogle Scholar
  15. 15.
    B.R. Xing, N. Liu, Y.M. Liu, H.H. Wu, Y.W. Jiang, L. Chen, M.Y. He, P. Wu, Adv. Funct. Mater. 17, 2455 (2007)CrossRefGoogle Scholar
  16. 16.
    B.B. Chang, J. Fu, Y.L. Tian, X.P. Dong, J. Phys. Chem. C 117, 6252 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Peng, A. Philippaerts, X.X. Ke, J.V. Noyen, F.D. Clippel, B.F. Sels, Catal. Today 150, 140 (2010)CrossRefGoogle Scholar
  18. 18.
    G. Chen, B.S. Fang, Bioresour. Technol. 102, 2635 (2011)CrossRefGoogle Scholar
  19. 19.
    B.V.S.K. Rao, K. Chandra Mouli, N. Rambabu, A.K. Dalai, R.B.N. Prasad, Catal. Commun. 14, 20 (2011)CrossRefGoogle Scholar
  20. 20.
    M.G. Kulkarni, R. Gopinath, L.C. Meher, A.K. Dalai, Green Chem. 8, 1056 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Nanostructured Functional MaterialsHuanghe Science and Technology CollegeZhengzhouChina

Personalised recommendations