Advertisement

Journal of Porous Materials

, Volume 22, Issue 2, pp 437–445 | Cite as

Highly crystalline LSX zeolite derived from biosilica for copper adsorption: the green synthesis for environmental treatment

  • Supak Tontisirin
Article

Abstract

Template-free Low Silica X (LSX) zeolite is known as environmentally-friendly zeolite in the application of wastewater treatment. It is one of the most open structures of 12-membered ring pores and contains a high number of cationic exchanged sites. The synthesis of LSX using agricultural byproducts even leads to a green and sustainable approach. This work suggests the optimized preparation method of LSX using the silica source solely from rice husk. Highly crystalline LSX zeolite (nSi/nAl = 1.03) is obtained in pure phase with high specific surface area of 798 m2 g−1 and total pore volume of 0.29 cm3 g−1. The green and cost-effective as-synthesized LSX shows a good potential adsorbent for heavy metal of copper(II) ions adsorption in aqueous solution with outstanding uptake capacity of 2.82 mmol g−1 or 179 mg g−1.

Keywords

Low Silica X Zeolite Template-free synthesis Biosilica Rice husk Copper adsorption Sustainable 

Notes

Acknowledgments

The authors would like to gratefully thank to U-thong Biomass Company for providing the rice husk for conducting this research and P. Naruemitpanichkul for the help of experimental work.

References

  1. 1.
    G. Bergerhoff, W.H. Baur, W. Nowacki, Neues Jahr. Miner. Mh. 1958, 193 (1958)Google Scholar
  2. 2.
    W.H. Baur, Am. Mineral. 49, 697 (1964)Google Scholar
  3. 3.
    Website of International Zeolite Association, databases for the framework type code of FAU. http://www.iza-structure.org/databases. Accessed 20 July 2014
  4. 4.
    H. Funakoshi, Y. Shirakura, US Patent 5993773, assigned to Tosoh Corporation (1999)Google Scholar
  5. 5.
    J. Yu, Y. Wang, F. Subhan, S. Tang, J. Zeng, J. Yang, Z. Yan, J. Porous Mater. 20, 1525 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Plee, US Patent 5173462, 1992, assigned to Ceca S. A. (1992)Google Scholar
  7. 7.
    Y. Kotagiri, A. Harada, Y. Nakamoto, S. Yoshida, S. Hirano, US Patent 6478854 B1, assigned to Tosoh Corporation (2002)Google Scholar
  8. 8.
    J.-B. Kim, Bull. Korean Chem. Soc. 24, 1814 (2003)CrossRefGoogle Scholar
  9. 9.
    D. Shen, M. Bülow, in Stud. Surf. Sci. Catal. Vol. 170A: From Zeolites to Porous MOF Materials, ed. By R. Xu, Z. Gao, J. Chen, W. Yan (Elsevier, Amsterdam, 2007), p. 866Google Scholar
  10. 10.
    D. Gary, R. Lardeau, US Patent 6083301, assigned to L’Air Liquide, Societe Anonyme pour l’Etude et l’Exploitation des Procedes Georges Claude (2000)Google Scholar
  11. 11.
    Y. Li, R.T. Yang, J. Phys. Chem. B. 110, 17175 (2006)CrossRefGoogle Scholar
  12. 12.
    N.R. Stuckert, R.T. Yang, Environ. Sci. Technol. 45, 10257 (2011)CrossRefGoogle Scholar
  13. 13.
    G.H. Kühl, Zeolites 7, 451 (1987)CrossRefGoogle Scholar
  14. 14.
    P. Khemthong, S. Prayoonpokarach, J. Wittayakun, Suranaree. J. Sci. Technol. 14, 367 (2007)Google Scholar
  15. 15.
    W. Payubnop, A. Muanpet, Synthesis and Reaction Test of Zeolite LSX Extracted From Bagasse, Senior Project (King Mongut’s University of Technology, North Bangkok, 2008)Google Scholar
  16. 16.
    A. Kaupp, Gasification of Rice Hulls: Theory and Praxis (Springer Fachmedien Wiesbaden GmbH, Braunschweig, 1984)CrossRefGoogle Scholar
  17. 17.
    C.L. Hwang, S. Chandra, in Waste Materials Used in Concrete Manufacturing, ed. by S. Chandra (Noyes Publications, New Jersey, 1997)Google Scholar
  18. 18.
    H.P. Wang, K.S. Lin, Y.J. Huang, M.C. Li, L.K. Tsaur, J. Hazard. Mater. 58, 147 (1998)CrossRefGoogle Scholar
  19. 19.
    M. Chareonpanich, T. Namto, P. Kongkachuichay, J. Limtrakul, Fuel Process. Technol. 85, 1623 (2004)CrossRefGoogle Scholar
  20. 20.
    D. Prasetyoko, Z. Ramli, S. Endud, H. Hamdan, B. Sulikowski, Waste Manage. 26(1173), 1173 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Chareonpanich, A. Nanta-Ngern, J. Limtrakul, Mater. Lett. 61(29), 5153 (2007)CrossRefGoogle Scholar
  22. 22.
    H. Katsuki, S. Komarneni, J. Solid State Chem. 182, 1749 (2009)CrossRefGoogle Scholar
  23. 23.
    N. Liu, K. Huo, M.T. McDowell, J. Zhao, Y. Cui, Sci. Rep. 3, 1919 (2013)Google Scholar
  24. 24.
    H. Ahmad-Alyosef, H. Uhlig, T. Münster, G. Kloess, W.-D. Einicke, R. Gläser, D. Enke, Chem. Eng. Trans. 37, 667 (2014)Google Scholar
  25. 25.
    Website of Pollution Control Department, Ministry of Natural Resources and Environment, Thailand. http://www.pdc.go.th in Information and Services of Water Quality Standard for Industrial Effluent and Drinking Water. Accessed 26 Sep 2014
  26. 26.
    Guidelines for Drinking-Water Quality, 4th edn. (WHO Press, Geneva, 2011)Google Scholar
  27. 27.
    A. Negrea, M. Ciopec, L. Lupa, C. Muntean, P. Negrea, Chem. Bull. “POLITEHNICA” Univ. (Timişoara) 53, 93 (2008)Google Scholar
  28. 28.
    P.S. Sudilovskiy, G.G. Kagramanov, V.A. Kolesnikov, Desalination 221, 192 (2008)CrossRefGoogle Scholar
  29. 29.
    M.A. Barakat, E. Schmidt, Desalination 256, 90 (2010)CrossRefGoogle Scholar
  30. 30.
    T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Desalination 169, 21 (2004)CrossRefGoogle Scholar
  31. 31.
    G. Issabayeva, M.K. Aroua, N.M. Sulaiman, Desalination 262, 94 (2010)CrossRefGoogle Scholar
  32. 32.
    E. Álvarez-Ayuso, A. García-Sánchez, X. Querol, Water Res. 37, 4855 (2003)CrossRefGoogle Scholar
  33. 33.
    T. Motsi, N.A. Rawson, M.J.H. Simmons, Int. J. Miner. Process. 92, 42 (2009)CrossRefGoogle Scholar
  34. 34.
    MdR Awual, T. Yaita, S.A. El-Safty, H. Shiwaku, S. Suzuki, Chem. Eng. J. 221, 322 (2013)CrossRefGoogle Scholar
  35. 35.
    M.M.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 5th rev edn. (Elsevier, Amsterdam, 2007)Google Scholar
  36. 36.
    Y. Lee, S.W. Carr, J.B. Parise, Chem. Mater. 10, 2561 (1998)CrossRefGoogle Scholar
  37. 37.
    Database of PDF No.01-089-0769 and No.01-089-0770 from PDF database management tool of The International Center for Diffraction Data (ICDD)Google Scholar
  38. 38.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  39. 39.
    M.G.A. Vieira, A.F. de Almeida Neto, M.G.C. da Silva, C.N. Carneiro, A.A. Melo Filho, Braz. J. Chem. Eng. 31, 519 (2014)CrossRefGoogle Scholar
  40. 40.
    T.A.H. Nguyen, H.H. Ngo, W.S. Guo, J. Zhang, S. Liang, Q.Y. Yue, Q. Li, T.V. Nguyen, Bioresource Technol. 148, 574 (2013)CrossRefGoogle Scholar
  41. 41.
    M. Bilal, J.A. Shah, T. Ashfaq, S.M.H. Gardazi, A.A. Tahir, A. Pervez, H. Haroon, Q. Mahmood, J. Hazard. Mater. 263, 322 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringKing Mongkut’s University of Technology North BangkokBangkokThailand
  2. 2.Center of Eco-Materials and CleanerKing Mongkut’s University of Technology North BangkokBangkokThailand

Personalised recommendations