Advertisement

Journal of Porous Materials

, Volume 23, Issue 2, pp 539–547 | Cite as

The role of CuO–TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting

  • Yujie Fu
  • Ping Shen
  • Zhijie Hu
  • Chang Sun
  • Ruifen Guo
  • Qichuan Jiang
Article

Abstract

Lamellar porous Al2O3 scaffolds with initial solid loading of 30 vol% were prepared by freeze casting using micron-sized Al2O3 powders as raw material and CuO–TiO2 additives as sintering aid. The effects of the composition of CuO–TiO2 on the microstructure, porosity and compressive property of the Al2O3 scaffolds were investigated and the mechanisms for sintering promotion addressed. The sintering aid effect was prominent when CuO:TiO2 was 1:2 in mass and their amount reached 3 wt% of the total ceramic powders. The corresponding compressive strength reached 176 ± 20 MPa with the porosity being 45 ± 1 % after sintering at 1450 °C for 2 h. Activation of the Al2O3 lattice due to partial substitution of Ti4+ for Al3+ and formation of a low-melting eutectic liquid were presumed to play a significant role in the sintering and strengthening of the Al2O3 scaffolds.

Keywords

Freeze casting Porous ceramics Sintering aids Compressive strength 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 51571099), National Basic Research Program of China (973 program) (No. 2012CB619600) and the Fundamental Research Funds for the Central Universities (Jilin University).

References

  1. 1.
    S. Deville, E. Saiz, A.P. Tomsia, Biomaterials 27, 5480 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Science 311, 515 (2006)CrossRefGoogle Scholar
  3. 3.
    S. Deville, E. Saiz, A.P. Tomsia, Acta Mater. 55, 1965 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Deville, Adv. Eng. Mater. 10, 155 (2008)CrossRefGoogle Scholar
  5. 5.
    K.K. Heon, K.T. Rim, K.D. Hyun, J. Korean Ceram. Soc. 51, 19 (2014)CrossRefGoogle Scholar
  6. 6.
    J.C. Han, L.Y. Hu, Y.M. Zhang, J. Am. Ceram. Soc. 92, 2165 (2009)CrossRefGoogle Scholar
  7. 7.
    B.H. Yoon, W.Y. Choi, H.E. Kim, J.H. Kim, Y.H. Koh, Scr. Mater. 58, 537 (2008)CrossRefGoogle Scholar
  8. 8.
    P. Shen, J.W. Xi, Y.J. Fu, A. Shaga, C. Sun, Q.C. Jiang, Acta Metall. Sin. 27, 944 (2014)CrossRefGoogle Scholar
  9. 9.
    L.Y. Hu, Y.M. Zhang, S.L. Dong, S.M. Zhang, B.X. Li, Ceram. Int. 39, 6287 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Liu, D. Zhang, C. Meggs, T.W. Button, Scr. Mater. 62, 466 (2010)CrossRefGoogle Scholar
  11. 11.
    D. Zhang, Y. Zhang, R. Xie, K.C. Zhou, Ceram. Int. 38, 6063 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.F. Tang, Q. Miao, S. Qiu, K. Zhao, L. Hu, J. Eur. Ceram. Soc. 34, 4077 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Zeng, Y. Zhang, K. Zhou, D. Zhang, Trans. Nonferr. Metal Soc. 24, 718 (2014)CrossRefGoogle Scholar
  14. 14.
    R.F. Chen, C.A. Wang, Y. Huang, L.G. Ma, W.Y. Lin, J. Am. Ceram. Soc. 90, 3478 (2007)CrossRefGoogle Scholar
  15. 15.
    C.Q. Hong, X.H. Zhang, J.C. Han, J.C. Du, W.B. Han, Scr. Mater. 60, 563 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Tang, Y.F. Chen, H. Wang, Key Eng. Mater. 280, 1287 (2004)Google Scholar
  17. 17.
    F. Ye, J. Zhang, H. Zhang, Mater. Sci. Eng. A 527, 6501 (2010)CrossRefGoogle Scholar
  18. 18.
    M.M. Porter, R. Imperio, M. Wen, Adv. Funct. Mater. 24, 1978 (2014)CrossRefGoogle Scholar
  19. 19.
    W.J. Smothers, H.J. Reynolds, J. Am. Ceram. Soc. 37, 588 (1954)CrossRefGoogle Scholar
  20. 20.
    D.S. Horn, G.L. Messing, Mater. Sci. Eng. A 195, 169 (1995)CrossRefGoogle Scholar
  21. 21.
    C.G. Li, Academic Annual Meeting of the Chinese Society of Silicate, Beijing, p. 25 (2003)Google Scholar
  22. 22.
    M. Sathiyakumar, F.D. Gnanam, J. Mater. Process. Technol. 133, 282 (2003)CrossRefGoogle Scholar
  23. 23.
    U.G.K. Wegst, M. Schecter, A.E. Donius, P.M. Hunger, Philos. Trans. R. Soc. A 368, 2099 (2010)CrossRefGoogle Scholar
  24. 24.
    A.M.M. Gadalla, J. White, J. Br. Ceram. Soc. 63, 39 (1964)Google Scholar
  25. 25.
    L.Z. Huang, J.X. Zhang, Ordnance. Mater. Sci. Eng. 5, 3 (1998)Google Scholar
  26. 26.
    D.R. Clarke, T.M. Shaw, D. Dimos, J. Am. Ceram. Soc. 72, 1103 (1989)CrossRefGoogle Scholar
  27. 27.
    F.H. Lu, F.X. Fang, Y.S. Chen, J. Eur. Ceram. Soc. 21, 1093 (2001)CrossRefGoogle Scholar
  28. 28.
    L.A. Xue, I.W. Chen, J. Am. Ceram. Soc. 74, 2011 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yujie Fu
    • 1
  • Ping Shen
    • 1
  • Zhijie Hu
    • 1
  • Chang Sun
    • 1
  • Ruifen Guo
    • 1
  • Qichuan Jiang
    • 1
  1. 1.Key Laboratory of Automobile Materials (Ministry of Education), Department of Materials Science and EngineeringJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations