Journal of Porous Materials

, Volume 23, Issue 2, pp 489–495 | Cite as

A facile one-pot hydrothermal process to synthesize sulfonated mesoporous ZrO2

  • Yani Pan
  • Jingji Zhang
  • Yu Xu
  • Yafeng Gao
  • Zhi Chen
  • Jiangying Wang


Sulfonated mesoporous ZrO2 was prepared by a facile one-pot hydrothermal process, using a mixture of ZrOCl2·8H2O and sodium dodecyl sulfonate in a NaOH solution, and subsequent calcination of the inorganic/organic intermediate. The influence of NaOH concentration, hydrothermal and calcination temperature on the structural and textural properties of the final products was investigated. Increasing the NaOH concentration gave rise to the transformation from tetragonal to monoclinic and then to tetragonal phase, whereas the increase of hydrothermal temperature led to the tetragonal-to-monoclinic phase transformation. As the NaOH concentration and hydrothermal temperature were increased, a narrow pore size distribution was turned into a multi-modal pore size distribution resulting from regular mesopores and interparticle voids. Accordingly, the incorporated sulfonate anions were oxidized into sulphate anions. After the calcination of 550 °C, the sulfonated products possessed tetragonal crystalline phase with average pore diameter of 4.2 nm and surface area of 108 m2g−1.


Mesoporous materials Zirconia Hydrothermal process Sulfonation 



This research was financially supported by the Science and Technology Program of Zhejiang Province (No. 2014C31012).


  1. 1.
    A.D. Brailsford, M. Yussouff, E.M. Logothetis, Sens. Actuators B Chem. 44, 321 (1997)CrossRefGoogle Scholar
  2. 2.
    S.P.S. Badwal, Solid State Ion. 52, 23 (1992)CrossRefGoogle Scholar
  3. 3.
    R.M. Ormerod, Chem. Soc. Rev. 32, 17 (2003)CrossRefGoogle Scholar
  4. 4.
    K. Sayama, H. Arakawa, J. Phys. Chem. 97, 531 (1993)CrossRefGoogle Scholar
  5. 5.
    K. Tanabe, T. Yamaguchi, Catal. Today 20, 185 (1994)CrossRefGoogle Scholar
  6. 6.
    H. Lin, J. Strull, Y. Liu, Z. Karmiol, K. Plank, G. Miller, Z. Guo, L. Yang, Energy Environ. Sci. 5, 9773 (2012)CrossRefGoogle Scholar
  7. 7.
    L. Yang, J. Su, S. Carl, J.G. Lynam, X. Yang, H. Lin, Appl. Catal. B Environ. 162, 149 (2015)CrossRefGoogle Scholar
  8. 8.
    H.L. Tidahy, M. Hosseni, S. Siffert, R. Cousin, J.F. Lamonier, A. Aboukaïs, B.L. Su, J.M. Giraudon, G. Leclercq, Catal. Today 137, 335 (2008)CrossRefGoogle Scholar
  9. 9.
    D. He, Y. Ding, H. Luo, C. Li, J. Mol. Catal. A Chem. 208, 267 (2004)CrossRefGoogle Scholar
  10. 10.
    N.-L. Wu, T.-F. Wu, J. Am. Ceram. Soc. 83, 3225 (2000)CrossRefGoogle Scholar
  11. 11.
    A. Mondal, A. Zachariah, P. Nayak, B.B. Nayak, J. Am. Ceram. Soc. 93, 387 (2010)CrossRefGoogle Scholar
  12. 12.
    S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia, Science 269, 1242 (1995)CrossRefGoogle Scholar
  13. 13.
    J.A. Knowles, M.J. Hudson, Chem. Commun. 20, 2083 (1995)CrossRefGoogle Scholar
  14. 14.
    C. Shih-Yuan, J. Ling-Yun, C. Soofin, J. Phys. Chem. B 110, 11761 (2006)CrossRefGoogle Scholar
  15. 15.
    G. Pacheco, E. Zhao, A. Garcia, A. Sklyarov, J.J. Fripiat, J. Mater. Chem. 8, 219 (1998)CrossRefGoogle Scholar
  16. 16.
    P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature 396, 152 (1998)CrossRefGoogle Scholar
  17. 17.
    Q. Yuan, L.-L. Li, S.-L. Lu, H.-H. Duan, Z.-X. Li, Y.-X. Zhu, C.-H. Yan, J. Phys. Chem. C 113, 4117 (2009)CrossRefGoogle Scholar
  18. 18.
    G.S. Armatas, G. Bilis, M. Louloudi, J. Mater. Chem. 21, 2997 (2011)CrossRefGoogle Scholar
  19. 19.
    S.G. Liu, H. Wang, J.P. Li, N. Zhao, W. Wei, Y.H. Sun, Mater. Res. Bull. 42, 171 (2007)CrossRefGoogle Scholar
  20. 20.
    S.K. Das, M.K. Bhunia, A.K. Sinha, A. Bhaumik, J. Phys. Chem. C 113, 8918 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Shen, B. Tian, C. Yu, S. Xie, Z. Zhang, B. Tu, D. Zhao, Chem. Mater. 15, 4046 (2003)CrossRefGoogle Scholar
  22. 22.
    Y. Sun, S. Ma, Y. Du, L. Yuan, S. Wang, J. Yang, F. Deng, F. Xiao, J. Phys. Chem. B 109, 2567 (2005)CrossRefGoogle Scholar
  23. 23.
    M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen, M. Hara, Nature 438, 178 (2005)CrossRefGoogle Scholar
  24. 24.
    A.A. Kiss, A.C. Dimian, G. Rothenberg, Adv. Synth. Catal. 348, 75 (2006)CrossRefGoogle Scholar
  25. 25.
    X. Wang, R. Liu, M.M. Waje, Z. Chen, Y. Yan, K.N. Bozhilov, P. Feng, Chem. Mater. 19, 2395 (2007)CrossRefGoogle Scholar
  26. 26.
    D.J. McIntosh, R.A. Kydd, Microporous Mesoporous Mater. 37, 281 (2000)CrossRefGoogle Scholar
  27. 27.
    X. Sang, L. Zhang, H. Wang, D. He, L. Deng, S. Huang, J. Wang, Y. Luo, Powder Technol. 253, 590 (2014)CrossRefGoogle Scholar
  28. 28.
    E. Zhao, O. Hernández, G. Pacheco, S. Hardcastle, J.J. Fripiat, J. Mater. Chem. 8, 1635 (1998)CrossRefGoogle Scholar
  29. 29.
    M. Rezaei, S.M. Alavi, S. Sahebdelfar, L. Xinmei, Z.-F. Yan, J. Mater. Sci. 42, 7086 (2007)CrossRefGoogle Scholar
  30. 30.
    F. Zane, S. Melada, M. Signoretto, F. Pinna, Appl. Catal. A Gen. 299, 137 (2006)CrossRefGoogle Scholar
  31. 31.
    F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi, G.C. Pellacani, J. Am. Ceram. Soc. 84, 2728 (2001)CrossRefGoogle Scholar
  32. 32.
    R.R. Piticescu, C. Monty, D. Taloi, A. Motoc, S. Axinte, J. Eur. Ceram. Soc. 21, 2057 (2001)CrossRefGoogle Scholar
  33. 33.
    K. Sato, H. Abe, S. Ohara, J. Am. Chem. Soc. 132, 2538 (2010)CrossRefGoogle Scholar
  34. 34.
    L. Ji, J. Zhang, Y. Gao, Y. Li, J. Wang, Ceram. Int. 40, 11419 (2014)CrossRefGoogle Scholar
  35. 35.
    P.P. Upare, J.-W. Yoon, M.Y. Kim, H.-Y. Kang, D.W. Hwang, Y.K. Hwang, H.H. Kung, J.-S. Chang, Green Chem. 15, 2935 (2013)CrossRefGoogle Scholar
  36. 36.
    B. Liu, R.T. Baker, J. Mater. Chem. 18, 5200 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChina Jiliang UniversityHangzhouChina
  2. 2.College of Materials, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina

Personalised recommendations