Journal of Porous Materials

, Volume 23, Issue 2, pp 317–323 | Cite as

Controllable fabrication and temperature-resistance characteristics of ordered nanoporous Au and Pt films

  • Xue-wei Wang
  • Yao-ren Kang
  • Wei-wang Song
  • Zhi-hao Yuan


In this work, the ordered nanoporous arrays of Au and Pt films are fabricated using anodized aluminum oxide (AAO) template based on the sputtering method. The presented synthetic strategy is scalable to large area by incorporating the deposition of a thin layer of Au or Pt. In addition, the grain size of Au and Pt nanoporous films is controlled with sputtering time. The thorough study of electrical transport properties for these metal films enables us to infer the nanoporous film morphology, and the evolution of the grain size with the change of sputtering time. In fact, the different physical behaviors are observed to occur in these metal films. The negative temperature coefficient of resistance (TCR) is visible for Pt nanoporous films, while Au nanoporous films show the positive TCR. With the increasing of sputtering time, the Pt grain size gradually becomes bigger, and the negative TCR properties weaken because the interface scattering of the electrons reduces. Therefore, the fabrication of metal nanoporous films with well-controlled physical properties might open new pathways for the growth of metal electrodes on AAO substrates for nanoelectronic devices.


Metals Nanoporous film Anodized aluminum oxide Electrical properties 



This work was supported by the National Natural Science Foundation of China (No. 21171128) and Tianjin Key Subject for Materials Physics and Chemistry.


  1. 1.
    X.S. Fang, T.Y. Zhai, U.K. Gautam, L. Li, L.M. Wu, Y. Bando, D. Golberg, Prog. Mater. Sci. 56, 175 (2011)CrossRefGoogle Scholar
  2. 2.
    M.X. Wang, C. Liu, J.P. Xu, F. Yang, L. Miao, M.Y. Yao, C.L. Gao, C. Shen, X. Ma, X. Chen, Z.A. Xu, Y. Liu, S.C. Zhang, D. Qian, J.F. Jia, Q.K. Xue, Science 336, 52 (2012)CrossRefGoogle Scholar
  3. 3.
    L.F. Hu, L.M. Wu, M.Y. Liao, X.S. Fang, Adv. Mater. 23, 1988 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Fan, X. Bian, Y. Niu, Y. Bai, X. Xiao, C. Yang, J. Yang, J. Yang, Appl. Surf. Sci. 285, 185 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Chen, L.F. Hu, J.X. Xu, M.Y. Liao, L.M. Wu, X.S. Fang, Small 7, 2449 (2011)Google Scholar
  6. 6.
    D.C. Leitao, J. Ventura, J.M. Teixeira, C.T. Sousa, S. Pinto, J.B. Sousa, J.M. Michalik, J.M. De Teresa, M. Vazquez, J.P. Araujo, J. Phys. Condens. Matter 25, 066007 (2013)CrossRefGoogle Scholar
  7. 7.
    Z. Ruan, M. Qiu, Phys. Rev. Lett. 96, 233901 (2006)CrossRefGoogle Scholar
  8. 8.
    J. Van de Vondel, C.C. de Souza Silva, B.Y. Zhu, M. Morelle, V.V. Moshchalkov, Phys. Rev. Lett. 94, 057003 (2005)CrossRefGoogle Scholar
  9. 9.
    B.C. Tappan, S.A. Steiner 3rd, E.P. Luther, Angew. Chem. Int. Ed. 49, 4544 (2010)CrossRefGoogle Scholar
  10. 10.
    C. Fang, A.V. Ellis, N.H. Voelcher, J. Electroanal. Chem. 659, 151 (2011)CrossRefGoogle Scholar
  11. 11.
    K.Y. Lee, Y.W. Lee, M. Kim, T.H. Kim, J. Mater. Chem. A 2, 2735 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.Q. Cao, J.W. Zhang, Y. Yang, Z.R. Huang, N.V. Long, M. Nogami, J. Nanoscale Nanotechnol. 14, 1194 (2014)CrossRefGoogle Scholar
  13. 13.
    X.B. Ge, L.Y. Chen, J.L. Kang, T. Fujita, A. Hirata, W. Zhang, J.H. Jiang, M.W. Chen, Adv. Funct. Mater. 23, 4156 (2013)CrossRefGoogle Scholar
  14. 14.
    H.W. Liu, R. Nishitani, T. Fujita, W. Li, L. Zhang, X.Y. Lang, P. Richard, K.S. Nakayama, X. Chen, M.W. Chen, Q.K. Xue, Phys. Rev. B 89, 035426 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Song, C.S. Kim, T. Kouh, Appl. Phys. Lett. 99, 263103 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, S. Mann, Nat. Mater. 2, 386 (2003)CrossRefGoogle Scholar
  17. 17.
    X. Ge, X. Yan, R. Wang, F. Tian, Y. Ding, J. Phys. Chem. C 113, 7379 (2009)CrossRefGoogle Scholar
  18. 18.
    G. Dong, X. Xiao, X. Liu, B. Qian, Y. Liao, C. Wang, D. Chen, J. Qiu, Appl. Surf. Sci. 255, 7623 (2009)CrossRefGoogle Scholar
  19. 19.
    R. Zheng, X. Guo, H. Fu, Appl. Surf. Sci. 257, 2367 (2011)CrossRefGoogle Scholar
  20. 20.
    K.A. Asghar, J.M. Elliott, A.M. Squires, J. Mater. Chem. 22, 13311 (2012)CrossRefGoogle Scholar
  21. 21.
    B. Rezaei, E. Havakeshian, A.A. Ensafi, Electrochim. Acta 136, 89 (2014)CrossRefGoogle Scholar
  22. 22.
    R.P. Cowburn, A.O. Adeyeye, J.A.C. Bland, Appl. Phys. Lett. 70, 2309 (1997)CrossRefGoogle Scholar
  23. 23.
    M. Kovylina, M. Erekhinsky, R. Morales, J.E. Villegas, I.K. Schuller, A. Labarta, X. Batlle, Appl. Phys. Lett. 95, 152507 (2009)CrossRefGoogle Scholar
  24. 24.
    H. Wang, Y. Wu, M. Wang, Y. Zhang, G. Li, L. Zhang, Nanotechnology 17, 1651 (2006)CrossRefGoogle Scholar
  25. 25.
    A.A. Zhukov, A.V. Goncharov, P.A.J. de Groot, P.N. Bartlett, M.A. Ghanem, J. Appl. Phys. 93, 7322 (2003)CrossRefGoogle Scholar
  26. 26.
    Q. Wei, X. Zhou, B. Joshi, Y. Chen, K.D. Li, Q. Wei, K. Sun, L. Wang, Adv. Mater. 21, 2865 (2009)CrossRefGoogle Scholar
  27. 27.
    C.C. Ho, T.W. Hsieh, H.H. Kung, W.T. Juan, K.H. Lin, W.L. Lee, Appl. Phys. Lett. 96, 122504 (2010)CrossRefGoogle Scholar
  28. 28.
    Z.L. Xiao, C.Y. Han, U. Welp, H.H. Wang, V.K. Vlasko-Vlasov, W.K. Kwok, D.J. Miller, J.M. Hiller, R.E. Cook, G.A. Willing, G.W. Crabtree, Appl. Phys. Lett. 81, 2869 (2002)CrossRefGoogle Scholar
  29. 29.
    D. Navas, M. Hernandez-Velez, M. Vazquez, W. Lee, K. Nielsch, Appl. Phys. Lett. 90, 192501 (2007)CrossRefGoogle Scholar
  30. 30.
    K.J. Merazzo, D.C. Leitao, E. Jimenez, J.P. Araujo, J. Camarero, R.P. del Real, A. Asenjo, M. Vazquez, J. Phys. D Appl. Phys. 44, 505001 (2011)CrossRefGoogle Scholar
  31. 31.
    D.C. Leitao, J. Ventura, C.T. Sousa, J.M. Teixeira, J.B. Sousa, M. Jaafar, A. Asenjo, M. Vazquez, J.M. De Teresa, J.P. Araujo, Nanotechnology 23, 425701 (2012)CrossRefGoogle Scholar
  32. 32.
    H.Y. Jang, S.K. Lee, S.H. Cho, J.H. Ahn, S. Park, Chem. Mater. 25, 3535 (2013)CrossRefGoogle Scholar
  33. 33.
    X.W. Wang, Z.C. He, J.S. Li, Z.H. Yuan, Curr. Nanosci. 8, 801 (2012)CrossRefGoogle Scholar
  34. 34.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xue-wei Wang
    • 1
    • 2
  • Yao-ren Kang
    • 1
  • Wei-wang Song
    • 1
  • Zhi-hao Yuan
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.Tianjin Key Laboratory for Photoelectric Materials and DevicesTianjin University of TechnologyTianjinChina

Personalised recommendations