Skip to main content
Log in

Synthesis of mesoporous MFI zeolite by dry gel conversion with ZnO particles and the catalytic activity on TMB cracking

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A facile synthesis method for mesoporous MFI zeolite (MMZ) has been developed. MFI zeolite was synthesized by a dry gel conversion in the presence of ZnO nanoparticles with a size of 20 nm. The as-synthesized MFI zeolite included crystalline layered zinc silicate and already possessed 5–15 nm mesopores. After calcination, MMZ/zinc silicate composite was treated with hydrochloric acid to remove unreacted ZnO particles. The micropore (1–2 nm) volume was increased after the HCl treatment, suggesting that ZnO nanoparticles (1–2 nm) remained during crystallization as well as zinc silicate. The catalytic activity of MMZ on 1,3,5-trimethylbenzene (TMB) cracking was compared with that of conventional MFI nanocrystals with a size of 80–100 nm. The conversion of TMB on MMZ was much higher than that on the MFI nanocrystals even though crystal size of MMZ is larger than the conventional MFI zeolite. These results suggest that acid sites on the internal surface of mesopores of MMZ contribute to the high conversion of TMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Song, D.M. Marcus, H. Fu, J.O. Ehresmann, J.F. Haw, J. Am. Chem. Soc. 124, 3844 (2002)

    Article  CAS  Google Scholar 

  2. J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, Acc. Chem. Res. 36, 317 (2003)

    Article  CAS  Google Scholar 

  3. W. Wang, A. Buchholz, M. Seiler, M. Hunger, J. Am. Chem. Soc. 125, 15260 (2003)

    Article  CAS  Google Scholar 

  4. A. Tavolaro, E. Drioli, Adv. Mater. 11, 975–996 (1999)

    Article  CAS  Google Scholar 

  5. J. Caro, M. Noack, P. Kolsch, R. Schafer, Microporous Mesoporous Mater. 38, 3–24 (2000)

    Article  CAS  Google Scholar 

  6. R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 13, 677 (2001)

    Article  CAS  Google Scholar 

  7. V.R. Choudhary, S. Mayadevi, Sep. Sci. Technol. 28(8), 1595–1607 (1993)

    Article  CAS  Google Scholar 

  8. J.A. Dunne, R. Mariwala, M. Rao, S. Sircar, R.J. Gorte, A.L. Myers, Langmuir 12, 5888 (1996)

    Article  CAS  Google Scholar 

  9. S. Inagaki, Y. Sakamoto, Y. Fukushima, O. Terasaki, Chem. Mater. 8, 2089–2095 (1996)

    Article  CAS  Google Scholar 

  10. F. Schüth, W. Schmidt, Adv. Mater. 14, 629–638 (2002)

    Article  Google Scholar 

  11. U. Ciesla, F. Schuth, Microporous Mesoporous Mater. 27, 131–149 (1999)

    Article  CAS  Google Scholar 

  12. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)

    Article  CAS  Google Scholar 

  13. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024–6036 (1998)

    Article  CAS  Google Scholar 

  14. Y. Zhang, E.C. Judkins, D.R. McMillin, D. Mehta, T. Ren, ACS Catal. 3, 2474 (2013)

    Article  CAS  Google Scholar 

  15. F. Jiao, H. Frei, Angew. Chem. Int. Ed. 48, 1841–1844 (2009)

    Article  CAS  Google Scholar 

  16. Y. Zhang, K. Nagasaka, X. Qiu, N. Tsubaki, Appl. Catal. A 276, 103–111 (2004)

    Article  CAS  Google Scholar 

  17. J. Bedia, J.M. Rosasa, J. Rodríguez-Mirasol, T. Cordero, Appl. Catal. B 94, 8–18 (2010)

    Article  CAS  Google Scholar 

  18. T. Kang, Y. Park, K. Choi, J. Sang Lee, J. Yi, J. Mater. Chem. 14, 1043–1049 (2004)

    Article  CAS  Google Scholar 

  19. C.M. Manamon, A.M. Burke, J.D. Holmes, M.A. Morris, J. Colloid Interface Sci. 369, 330–337 (2012)

    Article  CAS  Google Scholar 

  20. C.T. Hsieh, H.S. Teng, Carbon 38, 863–869 (2000)

    Article  CAS  Google Scholar 

  21. L. Liu, Q.-F. Deng, T.-Y. Ma, X.-Z. Lin, X.-X. Hou, Y.-P. Liu, Z.-Y. Yuan, J. Mater. Chem. 21, 16001 (2011)

    Article  CAS  Google Scholar 

  22. S. El-Safty, A. Shahat, M.R. Awual, M. Mekawy, J. Mater. Chem. 21, 5593–5603 (2011)

    Article  CAS  Google Scholar 

  23. M. Miyamoto, K. Nagata, T. Maruo, N. Nishiyama, K. Yogo, Y. Egashira, K. Ueyama, J. Membr. Sci. 325, 698–703 (2008)

    Article  CAS  Google Scholar 

  24. L. Guo, Y. Fan, N. Teramae, New J. Chem. 36, 1301–1303 (2012)

    Article  CAS  Google Scholar 

  25. X. Zhao, W. Li, S.X. Liu, Mater. Lett. 126, 174–177 (2014)

    Article  CAS  Google Scholar 

  26. G.-T. Qin, C. Wang, W. Wei, Carbon 48(14), 4206–4208 (2010)

    Article  CAS  Google Scholar 

  27. M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Chem. Mater. 12, 1961–1968 (2000)

    Article  CAS  Google Scholar 

  28. G.S. Attard, M. Edgar, J.W. Emsley, C.G. Göltner, Mater. Res. Soc. Symp. Proc. 425, 179–184 (1996)

    Article  CAS  Google Scholar 

  29. D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024–6036 (1998)

    Article  CAS  Google Scholar 

  30. K.M. Ryan, N.R.B. Coleman, D.M. Lyons, J.P. Hanrahan, T.R. Spalding, M.A. Morris, D.C. Steytler, R.K. Heenan, J.D. Holmes, Langmuir 18(12), 4996–5001 (2002)

    Article  Google Scholar 

  31. L.M. Guo, X.P. Dong, X.Z. Cui, F.M. Cui, J.L. Shi, Mater. Lett. 63(13–14), 1141–1143 (2009)

    Article  CAS  Google Scholar 

  32. J. Kim, J. Lee, T. Hyeon, Carbon 42, 2711–2719 (2004)

    Article  CAS  Google Scholar 

  33. S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Chem. Commun. 16, 2125–2127 (2005)

    Article  Google Scholar 

  34. J. Jin, T. Mitome, Y. Egashira, N. Nishiyama, Colloids Surf. A 384, 58–61 (2011)

    Article  CAS  Google Scholar 

  35. N. Yahaya, T. Mitome, N. Nishiyama, M.M. Sanagi, W.A.W. Ibrahim, H. Nur, J. Pharm. Innov. 8, 240–246 (2013)

    Article  Google Scholar 

  36. T. Mitome, Y. Iwai, Y. Uchida, Y. Egashira, M. Matsuura, K. Maekawa, N. Nishiyama, J. Mater. Chem. A R. Soc. Chem. 2, 10104–10108 (2014)

    Article  CAS  Google Scholar 

  37. K. Li, J. Valla, J. Garcia-Martinez, Chem. Cat. Chem. 6, 46 (2014)

    CAS  Google Scholar 

  38. C.J.H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am. Chem. Soc. 122, 7116 (2000)

    Article  CAS  Google Scholar 

  39. A.H. Janssen, I. Schmidt, C.J.H. Jacobsen, A.J. Koster, K.P. De Jong, Microporous Mesoporous Mater. 65, 59–75 (2003)

    Article  CAS  Google Scholar 

  40. H. Zhu, Z. Liu, Y. Wang, D. Kong, X. Yuan, Z. Xie, Chem. Mater. 20, 1134–1139 (2008)

    Article  CAS  Google Scholar 

  41. L. Wang, Z. Zhang, C. Yin, Z. Shan, F. Xiao, Microporous Mesoporous Mater. 131, 58–67 (2010)

    Article  CAS  Google Scholar 

  42. F.-S. Xiao, L. Wang, C. Yin, K. Lin, Y. Di, J. Li, R. Xu, D.S. Su, R. Schlögl, T. Yokoi, T. Tatsumi, Angew. Chem. Int. Ed. 45, 3090 (2006)

    Article  CAS  Google Scholar 

  43. R.R. Mukti, H. Hirahara, A. Sugawara, A. Shimojima, T. Okubo, Langmuir 26, 2731 (2009)

    Article  CAS  Google Scholar 

  44. J.C. Groen, J.A. Moulijn, J. Perez-Ramirez, J. Mater. Chem. 16, 2121–2131 (2006)

    Article  CAS  Google Scholar 

  45. Z. Qin, B. Shen, X. Gao, F. Lin, B. Wang, C. Xu, J. Catal. 278, 266–275 (2011)

    Article  CAS  Google Scholar 

  46. J. Qu, C.Y. Cao, Y.L. Hong, C.-Q. Chen, P.P. Zhu, W.G. Song, Z.Y. Wu, J. Mater. Chem. 22, 3562 (2012)

    Article  CAS  Google Scholar 

  47. J.P. Gilson, E.G. Derouane, J. Catal. 88, 538–841 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The TEM measurements were carried out by using a facility in the Research Center for Ultrahigh Voltage Electron Microscopy, Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Miyake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyake, K., Yamada, M., Sugiura, Y. et al. Synthesis of mesoporous MFI zeolite by dry gel conversion with ZnO particles and the catalytic activity on TMB cracking. J Porous Mater 23, 311–316 (2016). https://doi.org/10.1007/s10934-015-0083-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0083-x

Keywords

Navigation