Advertisement

Journal of Porous Materials

, Volume 23, Issue 2, pp 311–316 | Cite as

Synthesis of mesoporous MFI zeolite by dry gel conversion with ZnO particles and the catalytic activity on TMB cracking

  • Koji Miyake
  • Mayuka Yamada
  • Yusuke Sugiura
  • Yuichiro Hirota
  • Yoshiaki Uchida
  • Norikazu Nishiyama
Article

Abstract

A facile synthesis method for mesoporous MFI zeolite (MMZ) has been developed. MFI zeolite was synthesized by a dry gel conversion in the presence of ZnO nanoparticles with a size of 20 nm. The as-synthesized MFI zeolite included crystalline layered zinc silicate and already possessed 5–15 nm mesopores. After calcination, MMZ/zinc silicate composite was treated with hydrochloric acid to remove unreacted ZnO particles. The micropore (1–2 nm) volume was increased after the HCl treatment, suggesting that ZnO nanoparticles (1–2 nm) remained during crystallization as well as zinc silicate. The catalytic activity of MMZ on 1,3,5-trimethylbenzene (TMB) cracking was compared with that of conventional MFI nanocrystals with a size of 80–100 nm. The conversion of TMB on MMZ was much higher than that on the MFI nanocrystals even though crystal size of MMZ is larger than the conventional MFI zeolite. These results suggest that acid sites on the internal surface of mesopores of MMZ contribute to the high conversion of TMB.

Keywords

Zeolites Mesopore Dry gel conversion Layered silicate 

Notes

Acknowledgments

The TEM measurements were carried out by using a facility in the Research Center for Ultrahigh Voltage Electron Microscopy, Osaka University.

References

  1. 1.
    W. Song, D.M. Marcus, H. Fu, J.O. Ehresmann, J.F. Haw, J. Am. Chem. Soc. 124, 3844 (2002)CrossRefGoogle Scholar
  2. 2.
    J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, Acc. Chem. Res. 36, 317 (2003)CrossRefGoogle Scholar
  3. 3.
    W. Wang, A. Buchholz, M. Seiler, M. Hunger, J. Am. Chem. Soc. 125, 15260 (2003)CrossRefGoogle Scholar
  4. 4.
    A. Tavolaro, E. Drioli, Adv. Mater. 11, 975–996 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Caro, M. Noack, P. Kolsch, R. Schafer, Microporous Mesoporous Mater. 38, 3–24 (2000)CrossRefGoogle Scholar
  6. 6.
    R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 13, 677 (2001)CrossRefGoogle Scholar
  7. 7.
    V.R. Choudhary, S. Mayadevi, Sep. Sci. Technol. 28(8), 1595–1607 (1993)CrossRefGoogle Scholar
  8. 8.
    J.A. Dunne, R. Mariwala, M. Rao, S. Sircar, R.J. Gorte, A.L. Myers, Langmuir 12, 5888 (1996)CrossRefGoogle Scholar
  9. 9.
    S. Inagaki, Y. Sakamoto, Y. Fukushima, O. Terasaki, Chem. Mater. 8, 2089–2095 (1996)CrossRefGoogle Scholar
  10. 10.
    F. Schüth, W. Schmidt, Adv. Mater. 14, 629–638 (2002)CrossRefGoogle Scholar
  11. 11.
    U. Ciesla, F. Schuth, Microporous Mesoporous Mater. 27, 131–149 (1999)CrossRefGoogle Scholar
  12. 12.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)CrossRefGoogle Scholar
  13. 13.
    D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024–6036 (1998)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, E.C. Judkins, D.R. McMillin, D. Mehta, T. Ren, ACS Catal. 3, 2474 (2013)CrossRefGoogle Scholar
  15. 15.
    F. Jiao, H. Frei, Angew. Chem. Int. Ed. 48, 1841–1844 (2009)CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, K. Nagasaka, X. Qiu, N. Tsubaki, Appl. Catal. A 276, 103–111 (2004)CrossRefGoogle Scholar
  17. 17.
    J. Bedia, J.M. Rosasa, J. Rodríguez-Mirasol, T. Cordero, Appl. Catal. B 94, 8–18 (2010)CrossRefGoogle Scholar
  18. 18.
    T. Kang, Y. Park, K. Choi, J. Sang Lee, J. Yi, J. Mater. Chem. 14, 1043–1049 (2004)CrossRefGoogle Scholar
  19. 19.
    C.M. Manamon, A.M. Burke, J.D. Holmes, M.A. Morris, J. Colloid Interface Sci. 369, 330–337 (2012)CrossRefGoogle Scholar
  20. 20.
    C.T. Hsieh, H.S. Teng, Carbon 38, 863–869 (2000)CrossRefGoogle Scholar
  21. 21.
    L. Liu, Q.-F. Deng, T.-Y. Ma, X.-Z. Lin, X.-X. Hou, Y.-P. Liu, Z.-Y. Yuan, J. Mater. Chem. 21, 16001 (2011)CrossRefGoogle Scholar
  22. 22.
    S. El-Safty, A. Shahat, M.R. Awual, M. Mekawy, J. Mater. Chem. 21, 5593–5603 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Miyamoto, K. Nagata, T. Maruo, N. Nishiyama, K. Yogo, Y. Egashira, K. Ueyama, J. Membr. Sci. 325, 698–703 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Guo, Y. Fan, N. Teramae, New J. Chem. 36, 1301–1303 (2012)CrossRefGoogle Scholar
  25. 25.
    X. Zhao, W. Li, S.X. Liu, Mater. Lett. 126, 174–177 (2014)CrossRefGoogle Scholar
  26. 26.
    G.-T. Qin, C. Wang, W. Wei, Carbon 48(14), 4206–4208 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Chem. Mater. 12, 1961–1968 (2000)CrossRefGoogle Scholar
  28. 28.
    G.S. Attard, M. Edgar, J.W. Emsley, C.G. Göltner, Mater. Res. Soc. Symp. Proc. 425, 179–184 (1996)CrossRefGoogle Scholar
  29. 29.
    D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024–6036 (1998)CrossRefGoogle Scholar
  30. 30.
    K.M. Ryan, N.R.B. Coleman, D.M. Lyons, J.P. Hanrahan, T.R. Spalding, M.A. Morris, D.C. Steytler, R.K. Heenan, J.D. Holmes, Langmuir 18(12), 4996–5001 (2002)CrossRefGoogle Scholar
  31. 31.
    L.M. Guo, X.P. Dong, X.Z. Cui, F.M. Cui, J.L. Shi, Mater. Lett. 63(13–14), 1141–1143 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Kim, J. Lee, T. Hyeon, Carbon 42, 2711–2719 (2004)CrossRefGoogle Scholar
  33. 33.
    S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Chem. Commun. 16, 2125–2127 (2005)CrossRefGoogle Scholar
  34. 34.
    J. Jin, T. Mitome, Y. Egashira, N. Nishiyama, Colloids Surf. A 384, 58–61 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Yahaya, T. Mitome, N. Nishiyama, M.M. Sanagi, W.A.W. Ibrahim, H. Nur, J. Pharm. Innov. 8, 240–246 (2013)CrossRefGoogle Scholar
  36. 36.
    T. Mitome, Y. Iwai, Y. Uchida, Y. Egashira, M. Matsuura, K. Maekawa, N. Nishiyama, J. Mater. Chem. A R. Soc. Chem. 2, 10104–10108 (2014)CrossRefGoogle Scholar
  37. 37.
    K. Li, J. Valla, J. Garcia-Martinez, Chem. Cat. Chem. 6, 46 (2014)Google Scholar
  38. 38.
    C.J.H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am. Chem. Soc. 122, 7116 (2000)CrossRefGoogle Scholar
  39. 39.
    A.H. Janssen, I. Schmidt, C.J.H. Jacobsen, A.J. Koster, K.P. De Jong, Microporous Mesoporous Mater. 65, 59–75 (2003)CrossRefGoogle Scholar
  40. 40.
    H. Zhu, Z. Liu, Y. Wang, D. Kong, X. Yuan, Z. Xie, Chem. Mater. 20, 1134–1139 (2008)CrossRefGoogle Scholar
  41. 41.
    L. Wang, Z. Zhang, C. Yin, Z. Shan, F. Xiao, Microporous Mesoporous Mater. 131, 58–67 (2010)CrossRefGoogle Scholar
  42. 42.
    F.-S. Xiao, L. Wang, C. Yin, K. Lin, Y. Di, J. Li, R. Xu, D.S. Su, R. Schlögl, T. Yokoi, T. Tatsumi, Angew. Chem. Int. Ed. 45, 3090 (2006)CrossRefGoogle Scholar
  43. 43.
    R.R. Mukti, H. Hirahara, A. Sugawara, A. Shimojima, T. Okubo, Langmuir 26, 2731 (2009)CrossRefGoogle Scholar
  44. 44.
    J.C. Groen, J.A. Moulijn, J. Perez-Ramirez, J. Mater. Chem. 16, 2121–2131 (2006)CrossRefGoogle Scholar
  45. 45.
    Z. Qin, B. Shen, X. Gao, F. Lin, B. Wang, C. Xu, J. Catal. 278, 266–275 (2011)CrossRefGoogle Scholar
  46. 46.
    J. Qu, C.Y. Cao, Y.L. Hong, C.-Q. Chen, P.P. Zhu, W.G. Song, Z.Y. Wu, J. Mater. Chem. 22, 3562 (2012)CrossRefGoogle Scholar
  47. 47.
    J.P. Gilson, E.G. Derouane, J. Catal. 88, 538–841 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Koji Miyake
    • 1
  • Mayuka Yamada
    • 1
  • Yusuke Sugiura
    • 1
  • Yuichiro Hirota
    • 1
  • Yoshiaki Uchida
    • 1
    • 2
  • Norikazu Nishiyama
    • 1
    • 3
  1. 1.Division of Chemical Engineering, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.PRESTOJapan Science and Technology Agency (JST)KawaguchiJapan
  3. 3.CRESTJapan Science and Technology AgencyToyonakaJapan

Personalised recommendations