Journal of Porous Materials

, Volume 23, Issue 1, pp 175–183 | Cite as

The influence of Montmorillonite K10 as a support in the nickel catalyzed hydrogenation of octanal

  • Jignesh Valand
  • Abdul S. Mahomed
  • Sooboo Singh
  • Holger B. Friedrich


Ni supported on Montmorillonite was tested for the hydrogenation of octanal to octanol. Different loadings of Ni were tested including 10, 15 and 20 wt% across a temperature range from 110 to 180 °C. For the lower loading of Ni, that is 10 wt %, selectivity toward the alcohol was reduced due to the formation of C24 acetal and octyl ether. This poor selectivity to octanol was ascribed to acidic sites present on the clay support. At higher Ni loadings, octanal was more easily hydrogenated to octanol with high selectivity due to the increased surface area of the metal. Subsequently, the rates of side reactions, to form aldol products, acetals and ether were suppressed. The increase in metal surface area as a function of loading was confirmed by chemisorption studies. TEM analysis showed larger particles being formed at the higher loading; however, the average particle size was similar for all the catalysts synthesized which was deduced from the N2 chemisorption experiments. The highest yield of octanol was obtained over the 20 wt% loaded catalyst which was only slightly higher than that achieved over the 15 wt% catalyst. The effect of the support was assessed by comparing a 10 wt% Ni catalyst loaded on alumina. The alumina supported catalyst showed a higher selectivity to the alcohol at all the temperatures studied and this difference was ascribed to a higher dispersion of NiO on the alumina support compared to the clay support, as well as the difference in acidity of the two supports.


Montmorillonite Nickel Octanal Octanol Hydrogenation 



We would like to thank SASOL, the NRF and THRIP (Grant TP1208035643) for financial support. We would also like to extend thanks to Dr. N. Prinsloo (SASOL) and the Electron Microscopy Unit at UKZN (Westville campus).


  1. 1.
    U.K. Singh, M.A. Vannice, Appl. Catal. A 213, 1 (2001)CrossRefGoogle Scholar
  2. 2.
    R.M. Rioux, M.A. Vannice, J. Catal. 216, 362 (2003)CrossRefGoogle Scholar
  3. 3.
    K.R. Westerterp, E.J. Molgal, K.B. van Gelder, Chem. Eng. Process. 36, 17 (1997)CrossRefGoogle Scholar
  4. 4.
    X. Wang, U.S. Ozkan, J. Catal. 227, 492 (2004)CrossRefGoogle Scholar
  5. 5.
    A. Saadi, R. Merabti, Z. Rassoul, M.M. Bettahar, J. Mol. Catal. A Chem. 253, 79 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Jasik, R. Wojcieszak, S. Monteverdi, M. Ziolek, M.M. Bettahar, J. Mol. Catal. A Chem. 242, 81 (2005)CrossRefGoogle Scholar
  7. 7.
    D. An, Y. Guo, Y. Zhu, Z. Wang, Chem. Eng. J. 162, 509 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Yang, B. Xiao, Constr. Build. Mater. 22, 2299 (2008)CrossRefGoogle Scholar
  9. 9.
    P. Laszlo, Science 235, 1473 (1987)CrossRefGoogle Scholar
  10. 10.
    W. Tian, S. Guo, L. Shi, Bull. Korean Chem. Soc. 33(5), 1643 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Narayanan, K. Deshpande, Stud. Surf. Sci. Catal. 113, 773 (1998)CrossRefGoogle Scholar
  12. 12.
    X. Gao, J. Xu, Appl. Clay Sci. 33, 1 (2006)CrossRefGoogle Scholar
  13. 13.
    N. Kaur, D. Kishore, J. Chem. Pharm. Res. 4(2), 991 (2012)Google Scholar
  14. 14.
    R.S. Varma, Tetrahedron 58, 1235 (2002)CrossRefGoogle Scholar
  15. 15.
    C.N. Rhodes, D.R. Brown, J. Chem. Soc. Faraday Trans. 89(9), 1387 (1993)CrossRefGoogle Scholar
  16. 16.
    I. Kun, G. Szöllösi, M. Bartók, J. Mol. Catal. A Chem. 169, 235 (2001)CrossRefGoogle Scholar
  17. 17.
    P.W.N.M. van Leeuwen, N.D. Clément, M.J.L. Tschan, Coord. Chem. Rev. 255, 1499 (2011)CrossRefGoogle Scholar
  18. 18.
    A. de Klerk, Fischer-Tropsch Refining (Wiley-VCH Verlag & Co, Weinheim, 2011), p. 473CrossRefGoogle Scholar
  19. 19.
    I. Muthuvel, B. Krishnakumar, M. Swaminathan, Indian J. Chem. Sect. A 51, 800 (2012)Google Scholar
  20. 20.
    J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010)CrossRefGoogle Scholar
  21. 21.
    R.B. Jermy, A. Pandurangan, Appl. Catal. A 295, 185 (2005)CrossRefGoogle Scholar
  22. 22.
    T.K. Phung, A. Lagazzo, M.Á.R. Crespo, V.S. Escribano, G. Busca, J. Catal. 311, 102 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Chetty, H.B. Friedrich, V.D.B.C. Dasireddy, A. Govender, P.J. Mohlala, W. Barnard, ChemCatChem 6, 2384 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Lashdaf, V. Nieminen, M. Tiitta, T. Venalainen, H. Osterholm, O. Krause, Microporous Mesoporous Mater. 75, 149 (2004)CrossRefGoogle Scholar
  25. 25.
    R. Weingarten, G.A. Tompsett, W.C. Conner Jr, G.W. Huber, J. Catal. 279, 174 (2011)CrossRefGoogle Scholar
  26. 26.
    U. Flessner, D.J. Jones, J. Rozière, J. Zajac, L. Storaro, M. Lenarda, M. Pavan, A. Jiménez-López, E. Rodr´ıguez-Castellón, M. Trombetta, G. Busca, J. Mol. Catal. A Chem. 168, 247 (2001)CrossRefGoogle Scholar
  27. 27.
    R. Vidruk, M.V. Landau, M. Herskowitz, V. Ezersky, A. Goldbourt, J. Catal. 282, 215 (2011)CrossRefGoogle Scholar
  28. 28.
    R. Takahashi, S. Sato, T. Sodesawa, K. Arai, M. Yabuki, J. Catal. 229, 24 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jignesh Valand
    • 1
  • Abdul S. Mahomed
    • 1
  • Sooboo Singh
    • 1
  • Holger B. Friedrich
    • 1
  1. 1.Catalysis Research Group, School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanRepublic of South Africa

Personalised recommendations