Journal of Porous Materials

, Volume 23, Issue 1, pp 19–33 | Cite as

Mesoporous helical silica immobilizing manganese(III)-salen complex for oxidative kinetic resolution of secondary alcohols

  • Lin Ren
  • Le Li
  • Yu Li
  • Guangbin Zhang
  • Benhua Huang
  • Zulpiya Imam
  • Aqun Zheng
  • Yang Sun


Mesoporous helical silica were prepared by doping of chiral diammoniumcyclohexane mono-tartrate salt in a sol–gel process, then functionalized to immobilize Mn(III)-salen complexes for oxidative kinetic resolution of secondary alcohols. Characterization revealed the doped silica significantly changed chiral recognition, porosity and hydrolysis resistance compared with blank-doped one. In catalysis, helical silica-supported Mn(III)-salen showed satisfactory conversion, enantioselectivity and selectivity factor, while major configuration of resolution products was determined by configuration of silica supports more than Mn(III)-salen. Furthermore, linkage of (S,S)-diammonium salt-doped silica with Mn(III)-(R,R)salen showed better enantioselectivity than other combinations. At last, in addition to iodobenzene diacetate, hydrogen peroxide (30 wt%) was another effective terminal oxidant. This work not only provided new chiral silica materials, but also explored their application in catalytic resolution.


Mesoporous helical silica Mn(III)-salen Oxidative kinetic resolution Secondary alcohol Enantioselectivity 



This work was supported by Shaanxi Higher Education Teaching Reform Project (No. 13BY02, Cultivation of Creative Ability of Scientific Research for the Undergraduate), and the Fundamental Research Funds for the Central Universities (No. xjj2014005, Application of Porous Helical Support in Catalytic Asymmetric Reactions).

Supplementary material

10934_2015_52_MOESM1_ESM.doc (1.9 mb)
Supplementary material 1 (DOC 1944 kb)


  1. 1.
    A. Lumbroso, M.L. Cooke, B. Breit, Angew. Chem. Int. Ed. 52, 1890–1932 (2013)CrossRefGoogle Scholar
  2. 2.
    T. Shibata, K. Iwahashi, T. Kawasaki, K. Soai, Tetrahedron Asymmetry 18, 1759–1762 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Wang, Y. Wang, G. Li, P. Sun, J. Tian, H. Lu, Tetrahedron Asymmetry 22, 761–768 (2011)CrossRefGoogle Scholar
  4. 4.
    K. Huang, X. Zhang, H. Geng, S. Li, X. Zhang, ACS Catal. 2, 1343–1345 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Ghanem, H.Y. Aboul-Enein, Chirality 17, 1–15 (2005)CrossRefGoogle Scholar
  6. 6.
    K. Murakami, Y. Sasano, M. Tomizawa, M. Shibuya, E. Kwon, Y. Iwabuchi, J. Am. Chem. Soc. 136, 17591–17600 (2014)CrossRefGoogle Scholar
  7. 7.
    K. Masutani, T. Uchida, R. Irie, T. Katsuki, Tetrahedron Lett. 41, 5119–5123 (2000)CrossRefGoogle Scholar
  8. 8.
    W. Sun, H. Wang, C. Xia, J. Li, P. Zhao, Angew. Chem. Int. Ed. 42, 1042–1044 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Sahoo, P. Kumar, F. Lefebvre, S.B. Halligudi, Tetrahedron Lett. 49, 4865–4868 (2008)CrossRefGoogle Scholar
  10. 10.
    P.K. Bera, N.C. Maity, S.H.R. Abdi, N.H. Khan, R.I. Kureshy, H.C. Bajaj, App. Catal. A 467, 542–551 (2013)CrossRefGoogle Scholar
  11. 11.
    R. Tan, Y. Dong, M. Peng, W. Zheng, D. Yin, App. Catal. A 458, 1–10 (2013)CrossRefGoogle Scholar
  12. 12.
    H. Mizoguchi, T. Uchida, T. Katsuki, Angew. Chem. Int. Ed. 126, 3242–3246 (2014)CrossRefGoogle Scholar
  13. 13.
    O. Långvik, D. Mavrynsky, R. Leino, Catal. Today 241, 255–259 (2015)CrossRefGoogle Scholar
  14. 14.
    I. Fechete, Y. Wang, J.C. Védrine, Catal. Today 189, 2–27 (2012)CrossRefGoogle Scholar
  15. 15.
    F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 45, 3216–3251 (2006)CrossRefGoogle Scholar
  16. 16.
    T. Lu, X. Yao, M.G.Q. Lu, Y. He, J. Porous Mater. 17, 123–131 (2010)CrossRefGoogle Scholar
  17. 17.
    S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 429, 281–284 (2004)CrossRefGoogle Scholar
  18. 18.
    Y. Shang, Y. Li, X. He, S. Du, L. Zhang, E. Shi, S. Wu, Z. Li, P. Li, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao, ACS Nano 7, 1446–1453 (2013)CrossRefGoogle Scholar
  19. 19.
    C.I. Fernandes, M.S. Saraiva, T.G. Nunes, P.D. Vaz, C.D. Nunes, J. Catal. 309, 21–32 (2014)CrossRefGoogle Scholar
  20. 20.
    R.A. Shelton, I.W.C.E. Arends, G.T. Brink, A. Dijksman, Acc. Chem. Res. 35, 774–781 (2002)CrossRefGoogle Scholar
  21. 21.
    G. Wu, X. Wang, J. Li, N. Zhao, W. Wei, Y. Sun, Catal. Today 131, 402–407 (2008)CrossRefGoogle Scholar
  22. 22.
    J.F. Larrow, E.N. Jacobsen, Y. Gao, Y. Hong, X. Nie, C.M. Zepp, J. Org. Chem. 59, 1939–1942 (1994)CrossRefGoogle Scholar
  23. 23.
    Z. Zhang, F. Guan, X. Huang, Y. Wang, Y. Sun, J. Mol. Catal. A: Chem. 363–364, 343–353 (2012)CrossRefGoogle Scholar
  24. 24.
    Z. Guo, Y. Du, Y. Chen, S.-C. Ng, Y. Yang, J. Phys. Chem. C 114, 14353–14361 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Han, L. Zhao, J.Y. Ying, Adv. Mater. 19, 2454–2459 (2007)CrossRefGoogle Scholar
  26. 26.
    H. Zhang, Y. Zhang, C. Li, J. Catal. 238, 369–381 (2006)CrossRefGoogle Scholar
  27. 27.
    B.M. Choudary, T. Ramani, H. Maheswaran, L. Prashant, K.V.S. Ranganath, K.V. Kumar, Adv. Synth. Catal. 348, 493–498 (2006)CrossRefGoogle Scholar
  28. 28.
    S.P. Newman, W. Jones, J. Solid State Chem. 148, 26–40 (1999)CrossRefGoogle Scholar
  29. 29.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  30. 30.
    A. Galarneau, M. Nader, F. Guenneau, F.D. Renzo, A. Gedeon, J. Phys. Chem. C 111, 8268–8277 (2007)CrossRefGoogle Scholar
  31. 31.
    R. Fu, N. Yoshizawa, M.S. Dresselhaus, G. Dresselhaus, J.H. Satcher Jr, T.F. Baumann, Langmuir 18, 10100–10104 (2002)CrossRefGoogle Scholar
  32. 32.
    Z. Zhao, M. Li, J. Zhang, H. Li, P. Zhu, W. Liu, Ind. Eng. Chem. Res. 51, 9531–9539 (2012)CrossRefGoogle Scholar
  33. 33.
    N. Andreu, D. Flahaut, R. Dedryvère, M. Minvielle, H. Martinez, D. Gonbeau, A.C.S. Appl, Mater. Interfaces 7, 6629–6636 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Snir, R.D. Kamien, Science 307, 1067 (2005)CrossRefGoogle Scholar
  35. 35.
    R.I. Kureshy, I. Ahmad, K. Pathak, N.H. Khan, S.H.R. Abdi, J.K. Prathap, R.V. Jasra, Chirality 19, 352–357 (2007)CrossRefGoogle Scholar
  36. 36.
    Z. Li, Z.H. Tang, X.X. Hu, C.G. Xia, Chem. Eur. J. 11, 1210–1216 (2005)CrossRefGoogle Scholar
  37. 37.
    K. Yu, Z. Gu, R. Ji, L. Lou, F. Ding, C. Zhang, S. Liu, J. Catal. 252, 312–320 (2007)CrossRefGoogle Scholar
  38. 38.
    E.M. McGarrigle, D.G. Gilheany, Chem. Rev. 105, 1563–1602 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lin Ren
    • 1
  • Le Li
    • 1
  • Yu Li
    • 1
  • Guangbin Zhang
    • 2
  • Benhua Huang
    • 1
  • Zulpiya Imam
    • 1
  • Aqun Zheng
    • 1
  • Yang Sun
    • 1
  1. 1.Department of Applied Chemistry, School of ScienceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.School of Pharmacy, Health Science CenterXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations