Journal of Porous Materials

, Volume 22, Issue 6, pp 1581–1588 | Cite as

Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char

  • Dawei Li
  • Yuanyu Tian
  • Liangjun Li
  • Junhua Li
  • Hui Zhang


Highly microporous carbons with large CO2 uptakes at atmospheric pressure were prepared by KOH activation of peanut shell char at different temperatures (680–780 °C). The porous carbons (PCs) showed a microporosity of 99.0–99.5 %, with micropore volume and specific surface area varying from 0.73 to 0.79 ml/g and 1713 to 1893 m2/g, respectively. The adsorption of CO2 onto the PCs was a physisorption process. The CO2 uptakes of the PCs increased with decreasing the activation temperature. The 680 °C-activated sample showed a 1-bar CO2 uptake of 7.25 mmol/g (0 °C), which was among the highest values ever reported for biomass-based PCs. The high uptake was principally ascribable to its developed small micropores (<1 nm). Besides, this PC displayed a large 1-bar CO2 uptake at 25 °C (4.41 mmol/g), fast CO2 adsorption rate, moderate CO2-over-N2 selectivity, and excellent recyclability. These adsorption properties showed that the peanut-shell-based PC was a promising adsorbent for CO2 capture or storage.


CO2 capture Peanut shell Adsorption Biomass Porous carbon 



We acknowledged the financial support provided by the National Natural Science Foundation of China (51206099, 41202194), the Fundamental Research Funds for the Central Universities (15CX02024A), Zhejiang Key Level 1 Discipline of Forestry Engineering (2014lygcz019), Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province (2014lCUFB04), Program for New Century Excellent Talent in University of the Ministry of Education of China (NCET-11-1031), and National High Technology Research and Development Program of China (2012AA051801-2).


  1. 1.
    J. Song, W.Z. Shen, J.G. Wang, W.B. Fan, Carbon 69, 255 (2014)CrossRefGoogle Scholar
  2. 2.
    J.C. Wang, A. Heerwig, M.R. Lohe, M. Oschatz, L. Borchardt, S. Kaskel, J. Mater. Chem. 22, 13911 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Deng, H. Wei, T. Chen, B. Wang, J. Huang, G. Yu, Chem. Eng. J. 253, 46 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Li, H. Yi, X. Tang, F. Li, Q. Yuan, Chem. Eng. J. 229, 50 (2013)CrossRefGoogle Scholar
  5. 5.
    J.R. Li, Y.G. Ma, M.C. McCarthy, J. Sculley, J.M. Yu, H.K. Jeong, P.B. Balbuena, H.C. Zhou, Coord. Chem. Rev. 255, 1791 (2011)CrossRefGoogle Scholar
  6. 6.
    M.R. Mello, D. Phanon, G.Q. Silveira, P.L. Llewellyn, C.M. Ronconi, Microporous Mesoporous Mater. 143, 174 (2011)CrossRefGoogle Scholar
  7. 7.
    W.G. Lu, J.P. Sculley, D.Q. Yuan, R. Krishna, Z.W. Wei, H.C. Zhou, Angew. Chem. Int. Ed. 51, 7480 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Wei, S. Deng, B. Hu, Z. Chen, B. Wang, J. Huang, G. Yu, Chemsuschem 5, 2354 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Sevilla, A.B. Fuertes, Energy Environ. Sci. 4, 1765 (2011)CrossRefGoogle Scholar
  10. 10.
    A.S. Gonzalez, M.G. Plaza, F. Rubiera, C. Pevida, Chem. Eng. J. 230, 456 (2013)CrossRefGoogle Scholar
  11. 11.
    W. Hao, E. Bjorkman, M. Lilliestrale, N. Hedin, Appl. Energy 112, 526 (2013)CrossRefGoogle Scholar
  12. 12.
    R.T. Wang, P.Y. Wang, X.B. Yan, J.W. Lang, C. Peng, Q.J. Xue, ACS Appl. Mater. Interfaces 4, 5800 (2012)CrossRefGoogle Scholar
  13. 13.
    A.S. Ello, L.K.C. de Souza, A. Trokourey, M. Jaroniec, Microporous Mesoporous Mater. 180, 280 (2013)CrossRefGoogle Scholar
  14. 14.
    J.X. Zhang, L.L. Ou, Water Sci. Technol. 67, 737 (2013)CrossRefGoogle Scholar
  15. 15.
    Z.A. Al-Othman, R. Ali, M. Naushad, Chem. Eng. J. 184, 238 (2012)CrossRefGoogle Scholar
  16. 16.
    D. Li, C. Li, Y. Tian, L. Kong, L. Liu, Mater. Lett. 139, 68 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Alvarez, J. Esquena, C. Solans, A.B. Fuertes, Adv. Eng. Mater. 6, 897 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Yang, G.Q. Liu, M. Li, J.C. Zhang, X.M. Hao, Microporous Mesoporous Mater. 158, 108 (2012)CrossRefGoogle Scholar
  19. 19.
    D. Li, T. Ma, R. Zhang, Y. Tian, Y. Qiao, Fuel 139, 68 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks, H. Uyama, Chem. Commun. 48, 10283 (2012)CrossRefGoogle Scholar
  21. 21.
    X.Y. Ma, Y. Li, M.H. Cao, C.W. Hu, J. Mater. Chem. A 2, 4819 (2014)CrossRefGoogle Scholar
  22. 22.
    N.P. Wickramaratne, M. Jaroniec, J. Mater. Chem. A 1, 112 (2013)CrossRefGoogle Scholar
  23. 23.
    J.J. Cai, J.B. Qi, C.P. Yang, X.B. Zhao, ACS Appl. Mater. Interfaces 6, 3703 (2014)CrossRefGoogle Scholar
  24. 24.
    B.J. Zhu, K.X. Li, J.J. Liu, H. Liu, C.G. Sun, C.E. Snape, Z.X. Guo, J. Mater. Chem. A 2, 5481 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Wang, W.C. Li, L. Zhang, Z.Y. Jin, A.H. Lu, J. Mater. Chem. A 2, 4406 (2014)CrossRefGoogle Scholar
  26. 26.
    Y.F. Zhao, L. Zhao, K.X. Yao, Y. Yang, Q. Zhang, Y. Han, J. Mater. Chem. 22, 19726 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Liu, Q.F. Deng, X.X. Hou, Z.Y. Yuan, J. Mater. Chem. 22, 15540 (2012)CrossRefGoogle Scholar
  28. 28.
    N.P. Wickramaratne, J.T. Xu, M. Wang, L. Zhu, L.M. Dai, M. Jaroniec, Chem. Mater. 26, 2820 (2014)CrossRefGoogle Scholar
  29. 29.
    J.C. Wang, I. Senkovska, M. Oschatz, M.R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, J. Mater. Chem. A 1, 10951 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Zhu, P.C. Hillesheim, S.M. Mahurin, C.M. Wang, C.C. Tian, S. Brown, H.M. Luo, G.M. Veith, K.S. Han, E.W. Hagaman, H.L. Liu, S. Dai, Chemsuschem 5, 1912 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Wei, D.D. Zhou, Z.K. Sun, Y.H. Deng, Y.Y. Xia, D.Y. Zhao, Adv. Funct. Mater. 23, 2322 (2013)CrossRefGoogle Scholar
  32. 32.
    G.P. Hao, W.C. Li, D. Qian, A.H. Lu, Adv. Mater. 22, 853 (2010)CrossRefGoogle Scholar
  33. 33.
    S.S. Feng, W. Li, Q. Shi, Y.H. Li, J.C. Chen, Y. Ling, A.M. Asiri, D.Y. Zhao, Chem. Commun. 50, 329 (2014)CrossRefGoogle Scholar
  34. 34.
    X.Y. Ma, M.H. Cao, C.W. Hu, J. Mater. Chem. A 1, 913 (2013)CrossRefGoogle Scholar
  35. 35.
    Z.S. Zhang, J. Zhou, W. Xing, Q.Z. Xue, Z.F. Yan, S.P. Zhuo, S.Z. Qiao, PCCP 15, 2523 (2013)CrossRefGoogle Scholar
  36. 36.
    D.P. Vargas, L. Giraldo, J. Silvestre-Albero, J.C. Moreno-Pirajan, Adsorption 17, 497 (2011)CrossRefGoogle Scholar
  37. 37.
    G. Dobele, T. Dizhbite, M.V. Gil, A. Volperts, T.A. Centeno, Biomass Bioenergy 46, 145 (2012)CrossRefGoogle Scholar
  38. 38.
    X.P. Zhu, Y. Fu, G.S. Hu, Y. Shen, W. Dai, X. Hu, Water Air Soil Pollut. 224, 1387 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Yuan, X. Wu, Y. Chen, J. Huang, H. Luo, S. Deng, Environ. Sci. Technol. 47, 5474 (2013)CrossRefGoogle Scholar
  40. 40.
    J. Ludwinowicz, M. Jaroniec, Carbon 82, 297 (2015)CrossRefGoogle Scholar
  41. 41.
    A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 51, 1438 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dawei Li
    • 1
    • 2
    • 3
    • 4
  • Yuanyu Tian
    • 1
    • 2
  • Liangjun Li
    • 5
  • Junhua Li
    • 1
  • Hui Zhang
    • 6
  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China)QingdaoChina
  2. 2.Research Centre for Low-carbon Energy SourcesShandong University of Science and TechnologyQingdaoChina
  3. 3.Key Laboratory of Wood Science and TechnologyHangzhouChina
  4. 4.Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang ProvinceZhejiang A & F UniversityLin’anChina
  5. 5.Research Institute of Unconventional Petroleum and Renewable EnergyChina University of Petroleum (East China)QingdaoChina
  6. 6.Engineering Research Center of Heavy Oil Process Ltd. Corp.CNOOCQingdaoChina

Personalised recommendations