Skip to main content

Advertisement

Log in

Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Highly microporous carbons with large CO2 uptakes at atmospheric pressure were prepared by KOH activation of peanut shell char at different temperatures (680–780 °C). The porous carbons (PCs) showed a microporosity of 99.0–99.5 %, with micropore volume and specific surface area varying from 0.73 to 0.79 ml/g and 1713 to 1893 m2/g, respectively. The adsorption of CO2 onto the PCs was a physisorption process. The CO2 uptakes of the PCs increased with decreasing the activation temperature. The 680 °C-activated sample showed a 1-bar CO2 uptake of 7.25 mmol/g (0 °C), which was among the highest values ever reported for biomass-based PCs. The high uptake was principally ascribable to its developed small micropores (<1 nm). Besides, this PC displayed a large 1-bar CO2 uptake at 25 °C (4.41 mmol/g), fast CO2 adsorption rate, moderate CO2-over-N2 selectivity, and excellent recyclability. These adsorption properties showed that the peanut-shell-based PC was a promising adsorbent for CO2 capture or storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Song, W.Z. Shen, J.G. Wang, W.B. Fan, Carbon 69, 255 (2014)

    Article  CAS  Google Scholar 

  2. J.C. Wang, A. Heerwig, M.R. Lohe, M. Oschatz, L. Borchardt, S. Kaskel, J. Mater. Chem. 22, 13911 (2012)

    Article  CAS  Google Scholar 

  3. S. Deng, H. Wei, T. Chen, B. Wang, J. Huang, G. Yu, Chem. Eng. J. 253, 46 (2014)

    Article  CAS  Google Scholar 

  4. Y. Li, H. Yi, X. Tang, F. Li, Q. Yuan, Chem. Eng. J. 229, 50 (2013)

    Article  CAS  Google Scholar 

  5. J.R. Li, Y.G. Ma, M.C. McCarthy, J. Sculley, J.M. Yu, H.K. Jeong, P.B. Balbuena, H.C. Zhou, Coord. Chem. Rev. 255, 1791 (2011)

    Article  CAS  Google Scholar 

  6. M.R. Mello, D. Phanon, G.Q. Silveira, P.L. Llewellyn, C.M. Ronconi, Microporous Mesoporous Mater. 143, 174 (2011)

    Article  CAS  Google Scholar 

  7. W.G. Lu, J.P. Sculley, D.Q. Yuan, R. Krishna, Z.W. Wei, H.C. Zhou, Angew. Chem. Int. Ed. 51, 7480 (2012)

    Article  CAS  Google Scholar 

  8. H. Wei, S. Deng, B. Hu, Z. Chen, B. Wang, J. Huang, G. Yu, Chemsuschem 5, 2354 (2012)

    Article  CAS  Google Scholar 

  9. M. Sevilla, A.B. Fuertes, Energy Environ. Sci. 4, 1765 (2011)

    Article  CAS  Google Scholar 

  10. A.S. Gonzalez, M.G. Plaza, F. Rubiera, C. Pevida, Chem. Eng. J. 230, 456 (2013)

    Article  CAS  Google Scholar 

  11. W. Hao, E. Bjorkman, M. Lilliestrale, N. Hedin, Appl. Energy 112, 526 (2013)

    Article  CAS  Google Scholar 

  12. R.T. Wang, P.Y. Wang, X.B. Yan, J.W. Lang, C. Peng, Q.J. Xue, ACS Appl. Mater. Interfaces 4, 5800 (2012)

    Article  CAS  Google Scholar 

  13. A.S. Ello, L.K.C. de Souza, A. Trokourey, M. Jaroniec, Microporous Mesoporous Mater. 180, 280 (2013)

    Article  CAS  Google Scholar 

  14. J.X. Zhang, L.L. Ou, Water Sci. Technol. 67, 737 (2013)

    Article  CAS  Google Scholar 

  15. Z.A. Al-Othman, R. Ali, M. Naushad, Chem. Eng. J. 184, 238 (2012)

    Article  CAS  Google Scholar 

  16. D. Li, C. Li, Y. Tian, L. Kong, L. Liu, Mater. Lett. 139, 68 (2015)

    Article  CAS  Google Scholar 

  17. S. Alvarez, J. Esquena, C. Solans, A.B. Fuertes, Adv. Eng. Mater. 6, 897 (2004)

    Article  CAS  Google Scholar 

  18. R. Yang, G.Q. Liu, M. Li, J.C. Zhang, X.M. Hao, Microporous Mesoporous Mater. 158, 108 (2012)

    Article  CAS  Google Scholar 

  19. D. Li, T. Ma, R. Zhang, Y. Tian, Y. Qiao, Fuel 139, 68 (2015)

    Article  CAS  Google Scholar 

  20. M. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks, H. Uyama, Chem. Commun. 48, 10283 (2012)

    Article  CAS  Google Scholar 

  21. X.Y. Ma, Y. Li, M.H. Cao, C.W. Hu, J. Mater. Chem. A 2, 4819 (2014)

    Article  CAS  Google Scholar 

  22. N.P. Wickramaratne, M. Jaroniec, J. Mater. Chem. A 1, 112 (2013)

    Article  CAS  Google Scholar 

  23. J.J. Cai, J.B. Qi, C.P. Yang, X.B. Zhao, ACS Appl. Mater. Interfaces 6, 3703 (2014)

    Article  CAS  Google Scholar 

  24. B.J. Zhu, K.X. Li, J.J. Liu, H. Liu, C.G. Sun, C.E. Snape, Z.X. Guo, J. Mater. Chem. A 2, 5481 (2014)

    Article  CAS  Google Scholar 

  25. S. Wang, W.C. Li, L. Zhang, Z.Y. Jin, A.H. Lu, J. Mater. Chem. A 2, 4406 (2014)

    Article  Google Scholar 

  26. Y.F. Zhao, L. Zhao, K.X. Yao, Y. Yang, Q. Zhang, Y. Han, J. Mater. Chem. 22, 19726 (2012)

    Article  CAS  Google Scholar 

  27. L. Liu, Q.F. Deng, X.X. Hou, Z.Y. Yuan, J. Mater. Chem. 22, 15540 (2012)

    Article  CAS  Google Scholar 

  28. N.P. Wickramaratne, J.T. Xu, M. Wang, L. Zhu, L.M. Dai, M. Jaroniec, Chem. Mater. 26, 2820 (2014)

    Article  CAS  Google Scholar 

  29. J.C. Wang, I. Senkovska, M. Oschatz, M.R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, J. Mater. Chem. A 1, 10951 (2013)

    Article  CAS  Google Scholar 

  30. X. Zhu, P.C. Hillesheim, S.M. Mahurin, C.M. Wang, C.C. Tian, S. Brown, H.M. Luo, G.M. Veith, K.S. Han, E.W. Hagaman, H.L. Liu, S. Dai, Chemsuschem 5, 1912 (2012)

    Article  CAS  Google Scholar 

  31. J. Wei, D.D. Zhou, Z.K. Sun, Y.H. Deng, Y.Y. Xia, D.Y. Zhao, Adv. Funct. Mater. 23, 2322 (2013)

    Article  CAS  Google Scholar 

  32. G.P. Hao, W.C. Li, D. Qian, A.H. Lu, Adv. Mater. 22, 853 (2010)

    Article  CAS  Google Scholar 

  33. S.S. Feng, W. Li, Q. Shi, Y.H. Li, J.C. Chen, Y. Ling, A.M. Asiri, D.Y. Zhao, Chem. Commun. 50, 329 (2014)

    Article  CAS  Google Scholar 

  34. X.Y. Ma, M.H. Cao, C.W. Hu, J. Mater. Chem. A 1, 913 (2013)

    Article  CAS  Google Scholar 

  35. Z.S. Zhang, J. Zhou, W. Xing, Q.Z. Xue, Z.F. Yan, S.P. Zhuo, S.Z. Qiao, PCCP 15, 2523 (2013)

    Article  CAS  Google Scholar 

  36. D.P. Vargas, L. Giraldo, J. Silvestre-Albero, J.C. Moreno-Pirajan, Adsorption 17, 497 (2011)

    Article  CAS  Google Scholar 

  37. G. Dobele, T. Dizhbite, M.V. Gil, A. Volperts, T.A. Centeno, Biomass Bioenergy 46, 145 (2012)

    Article  CAS  Google Scholar 

  38. X.P. Zhu, Y. Fu, G.S. Hu, Y. Shen, W. Dai, X. Hu, Water Air Soil Pollut. 224, 1387 (2013)

    Article  Google Scholar 

  39. B. Yuan, X. Wu, Y. Chen, J. Huang, H. Luo, S. Deng, Environ. Sci. Technol. 47, 5474 (2013)

    Article  CAS  Google Scholar 

  40. J. Ludwinowicz, M. Jaroniec, Carbon 82, 297 (2015)

    Article  CAS  Google Scholar 

  41. A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 51, 1438 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledged the financial support provided by the National Natural Science Foundation of China (51206099, 41202194), the Fundamental Research Funds for the Central Universities (15CX02024A), Zhejiang Key Level 1 Discipline of Forestry Engineering (2014lygcz019), Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province (2014lCUFB04), Program for New Century Excellent Talent in University of the Ministry of Education of China (NCET-11-1031), and National High Technology Research and Development Program of China (2012AA051801-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Tian, Y., Li, L. et al. Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char. J Porous Mater 22, 1581–1588 (2015). https://doi.org/10.1007/s10934-015-0041-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0041-7

Keywords

Navigation