Journal of Porous Materials

, Volume 22, Issue 1, pp 239–245 | Cite as

Comparative SERS study carried out on unsilanized and silanized oxidized porous silicon surface coated by small gold nanoparticles

  • H. Dridi
  • A. Moadhen
  • L. Haji


Porous silicon (PSi) was formed by electrochemical anodization and was oxidized before silanization and immersion in colloidal gold nanoparticles (GNP) (5 nm size) solution. The oxidized PSi (OPSi) coated with nanoparticles was used as surface enhanced Raman scattering (SERS) substrate, where bovine serum albumin (BSA) was used as a target molecule. Also, rhodamine 6G (R6G) dyes were used to confirm the SERS efficiency. Firstly, the bio-conjugation between protein and GNP was investigated by localized surface plasmon resonance spectroscopy. Then a comparative SERS study from silanized and unsilanized OPSi was performed and showed a good vibrational BSA bands resolution with the unsilanized one. The silanized surface did not show any improvement on the SERS enhancement of the BSA due to the interferences between the vibrational modes of 3-aminopropyltriethoxysilane and BSA. Furthermore, we have investigated the BSA solution pH effect on the SERS results in the case of unsilanized OPSi surface. The results prove the efficiency of the SERS substrate at pH 4.9, corresponding to BSA iso-electric point. A detection limit of about 10−8 M was obtained for both BSA and R6G molecules.


Oxidized porous silicon Small size gold nanoparticles SERS Bovine serum albumin Rhodamine 6G 



The authors thank the Franco-Tunisian Joint Committee of University Cooperation (CMCU), No. 11G1109 PHC-Utique project for its support and financial of a part of this work.


  1. 1.
    M. Fleischmann, P.J. Hendra, A. Mcquillan, J. Phys. Chem. Lett. 26(2), 163 (1974)CrossRefGoogle Scholar
  2. 2.
    P. Alivisatos, Nat Biotech. 22(1), 47 (2004)CrossRefGoogle Scholar
  3. 3.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78(9), 1667 (1997)CrossRefGoogle Scholar
  4. 4.
    G. Tourrel, J. Corset, Raman Microscopy: Developments and Applications (Elsevier Academic Press, San Diego, 1996), p. 92101Google Scholar
  5. 5.
    A. Otto, Phys. Stat. Sol. (a) 188(4), 1455 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Iosin, F. Toderas, P.L. Baldeck, S. Astilean, J. Mol. Struct. 196, 924 (2009)Google Scholar
  7. 7.
    J. Hu, Z. Wang, J. Li, Sensors 7(12), 3299 (2007)CrossRefGoogle Scholar
  8. 8.
    E.N. Esenturk, A.R.H. Walker, J. Raman Spectrosc. 40(1), 86 (2009)CrossRefGoogle Scholar
  9. 9.
    C. David, N. Guillot, H. Shen, T. Toury, M. Lamy de la Chapelle, Nanotechnology 21, 475 (2010)CrossRefGoogle Scholar
  10. 10.
    G. Das, F. Mecarini, F. Gentile, F. De Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, E. Di Fabrizio, Biosens. Bioelect. 24, 1693 (2009)CrossRefGoogle Scholar
  11. 11.
    K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, N. Ogawa, Anal. Bioanal. Chem. 386(3), 639 (2006)CrossRefGoogle Scholar
  12. 12.
    N. Nath, A. Chilkoti, Anal. Chem. 74, 504 (2002)CrossRefGoogle Scholar
  13. 13.
    A.Y. Panarin, S.N. Terekhov, K.I. Kholostov, V.P. Bondarenko, Appl. Surf. Sci. 256, 6969 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Giorgis, E. Descrovi, A. Chiodoni, E. Froner, M. Scarpa, A. Venturello, F. Geobaldo, Appl. Surf. Sci. 254, 7494 (2008)CrossRefGoogle Scholar
  15. 15.
    M.V. Chursanova, L.P. Germash, V.O. Yukhymchuk, V.M. Dzhagan, I.A. Khodasevich, D. Cojoc, Appl. Surf. Sci. 256, 33693 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Ignat, R. Munoz, K. Irina, I. Obieta, M. Mihaela, M. Simion, M. Iovu, Superlattices Microstruct. 46, 451 (2009)CrossRefGoogle Scholar
  17. 17.
    W.F. Jiang, X.F. Li, H.T. Cai, X.J. Li, Appl. Surf. Sci. 257, 8089 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Jiao, D.S. Koktysh, N. Phambu, S.M. Weiss, Appl. Phys. Lett. 97, 153125 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Chan, S. Kwon, T.W. Koo, L.P. Lee, A.A. Berlin, Adv. Mater. 15(19), 1595 (2003)CrossRefGoogle Scholar
  20. 20.
    Y. Lai, J. Wang, T. He, S. Sun, Anal. Lett. 47, 833 (2014)CrossRefGoogle Scholar
  21. 21.
    C. Lü, J. Wang, X. Lü, Z. Jia, Chin Opt Lett 12, S12401 (2014)CrossRefGoogle Scholar
  22. 22.
    X. Sun, N. Wang, H. Li, Appl. Surf. Sci. 284, 549 (2013)CrossRefGoogle Scholar
  23. 23.
    A.Y. Panarin, V.S. Chirvony, K.I. Kholostov, P.-Y. Turpin, S.N. Terekhov, J. Appl. Spectrosc. 76, 280 (2009)CrossRefGoogle Scholar
  24. 24.
    T. Tsuboi, T. Sakka, Y.H. Ogata, Appl. Surf. Sci. 147, 6 (1999)CrossRefGoogle Scholar
  25. 25.
    A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, F. Giorgis, J. Raman Spectrosc. 43, 730 (2012)CrossRefGoogle Scholar
  26. 26.
    Q. Su, X. Ma, J. Dong, C. Jiang, W. Qian, ACS Appl. Mater. Interf. 3, 1873 (2011)CrossRefGoogle Scholar
  27. 27.
    C.S. Rout, A. Kumar, T.S. Fisher, Nanotechnology 22(39), 395704 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Debarge, J.P. Stoquert, A. Slaoui, L. Stalmans, J. Poortmans, Mat. Sci. Semicond. Process 1, 281 (1998)CrossRefGoogle Scholar
  29. 29.
    S.M. Haidary, E.P. Corcoles, N.K. Ali, J. Nanomaterials 2012 (2012) ID 830503Google Scholar
  30. 30.
    P. Pirasteh, J. Charrier, A. Soltani, S. Haesaert, L. Haji, C. Godon, N. Errien, Appl. Surf. Sci. 253, 1999 (2006)CrossRefGoogle Scholar
  31. 31.
    M. Hiraoui, M. Guendouz, N. Lorrain, A. Moadhen, L. Haji, M. Oueslati, Mat. Chem. Phys. 128, 151 (2011)CrossRefGoogle Scholar
  32. 32.
    H.L. Li, Y. Zhu, D. Xu, Y. Wan, L. Xia, X.S. Zhao, J. Appl. Phys. 105, 114307 (2009)CrossRefGoogle Scholar
  33. 33.
    T. Sakata, S. Maruyama, A. Ueda, H. Otsuka, Y. Miyahara, Langmuir 23, 2269 (2007)CrossRefGoogle Scholar
  34. 34.
    Su Qianqian, Xiaoyuan Ma, Jian Dong, Caiyun Jiang, Weiping Qian, ACS Appl Mater. Interfaces 3, 1873 (2011)CrossRefGoogle Scholar
  35. 35.
    C. Xie, Y.Q. Li, W. Tang, R.J. Newton, J. Appl. Phys. 94, 6138 (2003)CrossRefGoogle Scholar
  36. 36.
    E.C.Y. Li-Chan, S. Nakai, M. Hirotsuka, Blackie Academic and Professional (UK, London, 1994), p. 163Google Scholar
  37. 37.
    O.J. Bos, J.F. Labro, M.J. Ficher, J. Wilting, L.H. Janssen, J Bio Chem. 264, 953 (1989)Google Scholar
  38. 38.
    Sigma, Product Information, CAS number 9048-46-8 (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CNRS-UMR 6082Université Européenne de BretagneLannion CedexFrance
  2. 2.Unité Nanomatériaux Et Photonique, Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia

Personalised recommendations