Skip to main content
Log in

Cobalt-doped ZnS-reduced graphene oxide nanocomposite as an advanced photocatalytic material

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The removal of toxic organic pollutants from wastewater by graphene-based photocatalysts has dominated recent scientific research. As a result numerous nanomaterials have been studied and used for water remediation. ZnS has been widely studied due to its versatile application in photocatalysis. This study presents the synthesis of Co-doped graphene–ZnS nanocomposite by co-precipitation method. The materials were characterized by X-ray diffraction , Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller surface area analysis. UV/Vis diffuse reflectance spectroscopy was employed to estimate band gap energies. Laboratory experiments with indigo carmine (IC) dye was chosen as a model for organic pollutants and was used to evaluate the photocatalytic performance of Co-doped ZnS–rGO nanocomposite under visible light. The Co-doped ZnS–rGO showed significant visible light induced photocatalytic activity towards the degradation of IC. Highest photocatalytic activity was observed for the 0.3 % Co-doped ZnS–rGO sample (k = 3.1 × 10−2 min−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. M.M. Ayad, A.A. El-Nasr, J. Phys. Chem. C114, 14377 (2010)

    Google Scholar 

  2. P.C. Vandevivere, R. Bianchi, W. Verstraete, J. Chem. Technol. Biotechnol. 72, 289 (1998)

    Article  CAS  Google Scholar 

  3. D. Pak, W. Chang, Water Sci. Technol. 40, 115 (1999)

    Article  CAS  Google Scholar 

  4. G. Crini, Bioresour. Technol. 97, 1061 (2006)

    Article  CAS  Google Scholar 

  5. S. Chakraborty, M.K. Purkait, S.D. Gupta, S. De, J.K. Basu, Sep. Purif. Technol. 31, 141 (2003)

    Article  CAS  Google Scholar 

  6. P.S. Zhong, N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, J. Membr. Sci. 52, 417 (2012)

    Google Scholar 

  7. M. Riera-Torres, C. Gutiérrez-Bouzán, M. Crespi, Desalination 252, 53 (2010)

    Article  CAS  Google Scholar 

  8. E. Ellouze, D. Ellouze, A. Jrad, R.B. Amar, Desalin. Water Treat. 33, 118 (2011)

    Article  CAS  Google Scholar 

  9. A.L. Ahmad, S.W. Puasa, M.M.D. Zulkali, Desalination 191, 153 (2006)

    Article  CAS  Google Scholar 

  10. M. Neamtu, A. Yediler, I. Siminiceanu, M. Macoveanu, A. Kellrup, Dyes Pigment. 60, 61 (2004)

    Article  CAS  Google Scholar 

  11. U. Bali, Dyes Pigment. 60, 187 (2004)

    Article  CAS  Google Scholar 

  12. M.S. Siboni, M. Samarghandi, J.-K. Yang, S.-M. Lee, J. Adv. Oxid. Technol. 14, 302 (2011)

    CAS  Google Scholar 

  13. F. Zhang, A. Yediler, X. Liang, A. Kettrup, Dyes Pigment. 60, 1 (2004)

    Article  Google Scholar 

  14. M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, L. Shao, Chemosphere 89, 190 (2012)

    Article  CAS  Google Scholar 

  15. S. Palit, Int. J. Chem. Sci. 10, 27 (2012)

    CAS  Google Scholar 

  16. N. Kannan, M.M. Sundaram, Dyes Pigment. 51, 25 (2001)

    Article  CAS  Google Scholar 

  17. G. Mezohegyi, F.P. van der Zee, J. Font, A. Fortuny, A. Fabregat, J. Environ. Manag. 102, 148 (2012)

    Article  CAS  Google Scholar 

  18. A.R. Khataee, G. Dehghan, A. Ebadi, M. Zarei, M. Pourhassan, Bioresour. Technol. 101, 2252 (2010)

    Article  CAS  Google Scholar 

  19. I. Oller, S. Malato, J.A. Sánchez-Pérez, Sci. Total Environ. 409, 4141 (2011)

    Article  CAS  Google Scholar 

  20. C.-H. Wu, J.–M. Chern. Ind. Eng. Chem. Res. 45, 6450 (2006)

    Article  CAS  Google Scholar 

  21. S.J. Teichner, J. Porous Mater. 15, 311 (2008)

    Article  CAS  Google Scholar 

  22. X. Yang, F. Ma, K. Li, Y. Guo, J. Hu, W. Li, M. Huo, Y. Guo, J. Hazard. Mater. 175, 429 (2010)

    Article  CAS  Google Scholar 

  23. S. Choe, S.H. Lee, Y.Y. Chang, K.Y. Hwang, J. Khim, Chemosphere 42, 367 (2001)

    Article  CAS  Google Scholar 

  24. I. Matsui, J. Chem. Eng. Jpn. 38, 535 (2005)

    Article  CAS  Google Scholar 

  25. Y.W. Jun, J.W. Seo, J.O. Sang, J. Cheon, Coord. Chem. Rev. 249, 1766 (2005)

    Article  CAS  Google Scholar 

  26. S. Bhattacharyya, I. Perelshtein, O. Moshe, D.H. Rich, A. Gedanken, Adv. Funct. Mater. 18, 1641 (2008)

    Article  CAS  Google Scholar 

  27. A. Dev, S. Chaudhuri, B.N. Dev, Bull. Mater. Sci. 31, 551 (2008)

    Article  CAS  Google Scholar 

  28. G. Murugadoss, B. Rajamannan, U. Madhusudhanan, Chalcogenide Lett. 6, 197 (2009)

    CAS  Google Scholar 

  29. J.H. Choy, H.C. Lee, H. Jung, S.J. Hwang, J. Mater. Chem. 11, 2232 (2001)

    Article  CAS  Google Scholar 

  30. W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)

    Article  Google Scholar 

  31. E.I. Kapinus, T.I. Viktorova, T.A. Khalyavka, Theor. Exp. Chem. 42, 282 (2006)

    Article  CAS  Google Scholar 

  32. A. Ishizumia, C.W. Whiteb, Y. Kanemitsu, Physica E 26, 24 (2005)

    Article  Google Scholar 

  33. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Article  CAS  Google Scholar 

  34. M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, J. Phys. Chem. C 114, 6426 (2010)

    Article  CAS  Google Scholar 

  35. R. Sahraei, G.M. Aval, A. Baghizadeh, M.L. Rachti, A. Goudarzi, M.H. Majles, Ara. Mater. Lett. 62, 4345 (2008)

    Article  CAS  Google Scholar 

  36. S.K. Mehta, S. Kumar, S. Chaudhary, K.K. Bhasin, M. Gradzielski, Nanoscale Res. Lett. 4, 17 (2009)

    Article  CAS  Google Scholar 

  37. K.K. Nanda, S.N. Sarangi, S.N. Shu, Nanostruct. Mater. 10, 1401 (1998)

    Article  CAS  Google Scholar 

  38. Y. Zhang, N. Zhang, Z.-R. Tang, Y.-J. Xu, ACS Nano 6, 9777 (2012)

    Article  CAS  Google Scholar 

  39. Z. Wang, B. Huang, Y. Dai, X. Zhang, X. Qin, J. Wang, Z. Zheng, H. Cheng, Cryst. Eng. Comm. 14, 1687 (2012)

    Article  CAS  Google Scholar 

  40. M. Salavati-Niasari, M. Randjbar, D. Ghanbari, J. Nanostruct. 1, 231 (2012)

    Google Scholar 

  41. G.K. Ramesha, S. Sampath, J. Phys. Chem. C 113, 7985 (2009)

    Article  CAS  Google Scholar 

  42. E. Yoo, T. Okata, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 9, 2255 (2009)

    Article  CAS  Google Scholar 

  43. B. Barman, K.C. Sarma, Chalcogenide Lett. 8, 171 (2011)

    CAS  Google Scholar 

  44. B.S.R. Devi, R. Raveendran, A.V. Vaidyan, Pramana-J. Phys. 68, 679 (2007)

    Article  CAS  Google Scholar 

  45. C. Bia, L. Pan, M. Xu, J. Yin, L. Qin, J. Liu, H. Zhu, J.Q. Xiao, Mater. Chem. Phys. 116, 363 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Faculty of Science, University of Johannesburg, South Africa, the National Research Fund of South Africa, and Nanotechnology and Applications Centre, University of Allahabad, Allahabad, India. The authors also wish to thank Mr. A. Sacko and Mr. P. Komane in the Department of Applied Chemistry, University of Johannesburg for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agorku, E.S., Mamo, M.A., Mamba, B.B. et al. Cobalt-doped ZnS-reduced graphene oxide nanocomposite as an advanced photocatalytic material. J Porous Mater 22, 47–56 (2015). https://doi.org/10.1007/s10934-014-9871-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9871-y

Keywords

Navigation