Journal of Porous Materials

, Volume 21, Issue 6, pp 1009–1014 | Cite as

One-pot hydrothermal synthesis of nitrogen-doped hierarchically porous carbon monoliths for supercapacitors

  • Yurong Liu


The nitrogen-doped hierarchically porous carbon monoliths (N-HPCMs) were successfully synthesized by using dicyandiamide (DCDA) as nitrogen source, phenolic resol as carbon precursor and mixed triblock copolymers as templates via a one-pot hydrothermal approach. The obtained carbon monoliths possess tunable mesopore size (4.3–11.4 nm), large surface area (552–660 m2/g), and high nitrogen content (up to 12.1 wt%). Ascribed to the nitrogen-doped frameworks and hierarchical porosity, N-HPCMs exhibit good electrochemical performance as the supercapacitor electrode with specific capacitance of 268.9 F/g (in 6 M KOH) at a current density of 1 A/g, and a 4.1 % loss of the specific capacitance after 5,000 charge–discharge cycles, indicating a long-term cycling stability. Such unique features make N-HPCMs promising electrode materials for high performance supercapacitors.


Nitrogen-doped carbon monoliths Hydrothermal synthesis Hierarchically porous Supercapacitors 



The authors gratefully acknowledge the financial supports from the Program of Chongqing Municipal Education Commission (KJ121201), the First Excellent Young Teachers Program of Chongqing high school ([2011]65), Chongqing Yongchuan Key Technologies R&D Program (YCSTC, 2011AC4001) and Research Program of Chongqing University of Arts and Sciences (Z2011RCYJ04).


  1. 1.
    W.C. Li, G.Z. Nong, A.H. Lu, H.Q. Hu, J. Porous Mater. 18, 23 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Qu, J. Power Sources 109, 403 (2002)CrossRefGoogle Scholar
  3. 3.
    A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)CrossRefGoogle Scholar
  4. 4.
    H. Zhou, S. Zhu, M. Hibino, I. Honma, J. Power Sources 122, 219 (2003)CrossRefGoogle Scholar
  5. 5.
    S. Alvarez, J. Esquena, C. Solans, A.B. Fuertes, Adv. Eng. Mater. 6, 897 (2004)CrossRefGoogle Scholar
  6. 6.
    A.H. Lu, J.H. Smatt, S. Backlund, M. Linden, Microporous Mesoporous Mater. 72, 59 (2004)CrossRefGoogle Scholar
  7. 7.
    L.F. Wang, S. Lin, K.F. Lin, C.Y. Yin, D.S. Liang, Y. Di, P.W. Fan, D.Z. Jiang, F.S. Xiao, Microporous Mesoporous Mater. 85, 136 (2005)CrossRefGoogle Scholar
  8. 8.
    A.H. Lu, W.C. Li, W. Schmidt, F. Schuth, Microporous Mesoporous Mater. 95, 187 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Jaroniec, J. Choma, J. Gorka, A. Zawislak, Chem. Mater. 20, 1069 (2007)CrossRefGoogle Scholar
  10. 10.
    C. Ho, M. Wu, J. Phys. Chem. C 115, 22068 (2011)CrossRefGoogle Scholar
  11. 11.
    G.J. Tao, L.X. Zhang, Z.L. Hua, Y. Chen, L.M. Guo, J.M. Zhang, Z. Shu, J.H. Gao, H.R. Chen, W. Wu, Z.W. Liu, J.L. Shi, Carbon 66, 547 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Huang, H.Q. Cai, D. Feng, D. Gu, Y.H. Deng, B. Tu, H.T. Wang, P.A. Webley, D.Y. Zhao, Chem. Commun. 23, 2641 (2008)CrossRefGoogle Scholar
  13. 13.
    D. Carriazo, F. Picó, M.C. Gutiérrez, F. Rubio, J.M. Rojo, F. del Monte, J. Mater. Chem. 20, 773 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Xu, Q.M. Gao, H.L. Guo, H.L. Wang, Microporous Mesoporous Mater. 133, 106 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Balach, M.M. Bruno, N.G. Cotella, D.F. Acevedo, C.A. Barbero, J. Power Sources 199, 386 (2012)CrossRefGoogle Scholar
  16. 16.
    B.Z. Fang, A. Bonakdarpour, M.S. Kim, J.H. Kim, D.P. Wilkinson, J.S. Yu, Microporous Mesoporous Mater. 182, 1 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Li, Z.Y. Fu, B.L. Su, Adv. Funct. Mater. 22, 4634 (2012)CrossRefGoogle Scholar
  18. 18.
    Y.Y. Li, Z.S. Li, P.K. Shen, Adv. Mater. 25, 2474 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Mun, C. Jo, T. Hyeon, J. Lee, K.S. Ha, K.W. Jun, S.H. Lee, S.W. Hong, H.I. Lee, S. Yoon, J. Lee, Carbon 64, 391 (2013)CrossRefGoogle Scholar
  20. 20.
    D. Hulicova, M. Kodama, H. Hatori, Chem. Mater. 18, 2318 (2006)CrossRefGoogle Scholar
  21. 21.
    E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-Guterl, F. Béguin, Electrochim. Acta 51, 2209 (2006)CrossRefGoogle Scholar
  22. 22.
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19, 438 (2009)CrossRefGoogle Scholar
  23. 23.
    J. Wei, D.D. Zhou, Z.K. Sun, Y.H. Deng, Y.Y. Xia, D.Y. Zhao, Adv. Funct. Mater. 23, 2322 (2013)CrossRefGoogle Scholar
  24. 24.
    Z. Liu, J.H. Mi, Y. Yang, X.L. Tan, C. Lv, Electrochim. Acta 115, 206 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Qie, W.M. Chen, H.H. Xu, X.Q. Xiong, Y. Jiang, F. Zou, X.L. Hu, Y. Xin, Z.L. Zhang, Y.H. Huang, Energy Environ. Sci. 6, 2497 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Zhong, F. Xu, Z.H. Li, R.W. Fu, D.C. Wu, Nanoscale 5, 4678 (2013)CrossRefGoogle Scholar
  27. 27.
    Y.C. Wang, S.Y. Tao, Y.L. An, Microporous Mesoporous Mater. 163, 249 (2012)CrossRefGoogle Scholar
  28. 28.
    G.P. Hao, J. Mi, D. Li, W.H. Qu, T.J. Wu, W.C. Li, A.H. Lu, New Carbon Mater. 26, 197 (2011)CrossRefGoogle Scholar
  29. 29.
    W. Xiong, M.X. Liu, L.H. Gan, Y.K. Lv, Y. Li, L. Yang, Z.J. Xu, Z.X. Hao, H.L. Liu, L.W. Chen, J. Power Sources 196, 10461 (2011)CrossRefGoogle Scholar
  30. 30.
    Z.B. Wen, Q.T. Qu, Q. Gao, X.W. Zheng, Z.H. Hu, Y.P. Wu, Y.F. Liu, X.J. Wang, Electrochem. Commun. 11, 715 (2009)CrossRefGoogle Scholar
  31. 31.
    H.F. Li, R.D. Wang, R. Cao, Microporous Mesoporous Mater. 111, 32 (2008)CrossRefGoogle Scholar
  32. 32.
    D.C. Wu, X. Chen, S.H. Lu, Y.R. Liang, F. Xu, R.W. Fu, Microporous Mesoporous Mater. 131, 261 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Research Center for Material Interdisciplinary ScienceChongqing University of Arts and ScienceChongqingPeople’s Republic of China

Personalised recommendations