Journal of Porous Materials

, Volume 21, Issue 5, pp 883–888 | Cite as

Hydrogen adsorption on M-ZSM-12 zeolite clusters (M = K, Na and Li): a density functional theory study

  • Mehmet Ferdi Fellah


The molecular adsorption of hydrogen has been studied theoretically via DFT on additional framework with alkali metal atoms (K, Na and Li) in ZSM-12 zeolite. A 14T channel zeolite cluster model was used. Lewis acidity of alkali metals decreases with increasing atomic radius of alkali metal and H2 adsorption. Adsorption enthalpy values were computed to be −7.4 and −5.1 kJ/mol on Li- and Na-ZSM-12 clusters, respectively. Hydrogen adsorption enthalpy values for Li- and Na-cases are meaningfully larger than the liquefaction enthalpy of hydrogen molecule. This designates that Li- and Na-ZSM-12 zeolites are potential cryoadsorbent materials for hydrogen storage.


Density functional theory Hydrogen adsorption ZSM-12 MTW Alkali metals Lewis acidity 



The numerical calculations reported in this paper were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure).


  1. 1.
    A.A. Strub, G. Imarisio, Hydrogen as an Energy Vector (D. Reidel, Dordrecht, 1980)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    G. Yang, L. Zhou, X. Liu, X. Han, X. Bao, J. Phys. Chem. B Lett. 110, 22295 (2006)CrossRefGoogle Scholar
  4. 4.
    G. Yang, L. Zhou, X. Liu, X. Han, X. Bao, Microporous Mesoporous Mater. 161, 168 (2012)CrossRefGoogle Scholar
  5. 5.
    A.A. Shubin, G.M. Zhidomirov, V.B. Kazansky, R.A. Van Santen, Catal. Lett. 90, 137 (2003)CrossRefGoogle Scholar
  6. 6.
    F. Darkrim, A. Aoufi, P. Malbrunot, D. Levesque, J. Chem. Phys. 112, 5991 (2000)CrossRefGoogle Scholar
  7. 7.
    C.O. Areán, O.V. Manoilova, B. Bonelli, M.R. Delgado, G.T. Palomino, E. Garrone, Chem. Phys. Lett. 370, 631 (2003)CrossRefGoogle Scholar
  8. 8.
    C.O. Arean, M.R. Delgado, G.T. Palomino, M.T. Rubio, N.M. Tsyganenko, A.A. Tsyganenko, E. Garrone, Microporous Mesoporous Mater. 80, 247 (2005)CrossRefGoogle Scholar
  9. 9.
    X. Du, Y. Huang, Q. Zhang, J. Li, E. Wu, S. Xuebao, S. Jiagong, Acta Pet. Sinica (Pet. Process. Sect.) 28, 137 (2012)Google Scholar
  10. 10.
    M.K. Song, K.T. No, Catal. Today 120, 374 (2007)CrossRefGoogle Scholar
  11. 11.
    J.M. Liang, R.G. Zhang, Q. Zhao, J.X. Dong, B.J. Wang, J.P. Li, Acta Phys. Chim. Sin. 27, 1647 (2011)Google Scholar
  12. 12.
    C.O. Areán, G.T. Palomino, M.R.L. Carayol, A. Pulido, M. Rubeš, O. Bludský, P. Nachtigall, Chem. Phys. Lett. 477, 139 (2009)CrossRefGoogle Scholar
  13. 13.
    X.M. Du, Y. Huang, E.D. Wu, Appl. Mech. Mater. 55–57, 1518 (2011)CrossRefGoogle Scholar
  14. 14.
    F.S. Victoire, A.M. Goulay, E. Cohen de Lara, Langmuir 14, 7255 (1998)CrossRefGoogle Scholar
  15. 15.
    L. Kang, W. Deng, K. Han, T. Zhang, Z. Liu, Int. J. Hydrogen Energy 33, 105 (2008)CrossRefGoogle Scholar
  16. 16.
    G.P. Petrova, G.N. Vayssilov, N. Rösch, J. Phys. Chem. C 111, 14484 (2007)CrossRefGoogle Scholar
  17. 17.
    P. Nachtigall, E. Garrone, G.T. Palomino, M.R. Delgado, D. Nachtigallová, C.O. Areán, Phys. Chem. Chem. Phys. 8, 2286 (2006)CrossRefGoogle Scholar
  18. 18.
    C.O. Areán, G.T. Palomino, E. Garrone, D. Nachtigallová, P. Nachtigall, J. Phys. Chem. B 110, 395 (2006)CrossRefGoogle Scholar
  19. 19.
    F.J. Torres, B. Civalleri, A. Terentyev, P. Ugliengo, C. Pisani, J. Phys. Chem. B Lett. 111, 1871 (2007)CrossRefGoogle Scholar
  20. 20.
    F.J. Torres, J.G. Vitillo, B. Civalleri, G. Ricchiardi, A. Zecchina, J. Phys. Chem. C 111, 2505 (2007)CrossRefGoogle Scholar
  21. 21.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  22. 22.
    M.F. Frisch et al., Gaussian 09 (Gaussian Inc., Wallingford, 2009)Google Scholar
  23. 23.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  24. 24.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  25. 25.
    J. Baker, M. Muir, J. Andzelm, A. Scheiner, ACS Symp. Ser. 629, 342 (1996)CrossRefGoogle Scholar
  26. 26.
    N.A. Kachurovskaya, G.M. Zhidomirov, E.J.M. Hensen, R.A. Santen, Catal. Lett. 86, 25 (2003)CrossRefGoogle Scholar
  27. 27.
    N.A. Kachurovskaya, G.M. Zhidomirov, R.A. Santen, J. Phys. Chem. B 108, 5944 (2004)CrossRefGoogle Scholar
  28. 28.
    M.F. Fellah, J. Phys. Chem. C 115, 1940 (2011)CrossRefGoogle Scholar
  29. 29.
    X. Rozanska, X. Saintigny, R.A. Santen, F. Hutschka, J. Catal. 202, 141 (2001)CrossRefGoogle Scholar
  30. 30.
    X. Rozanska, R.A. Santen, F. Hutschka, J. Hafner, J. Am. Chem. Soc. 123, 7655 (2001)CrossRefGoogle Scholar
  31. 31.
    A.M. Vos, X. Rozanska, R.A. Schoonheydt, R.A. Santen, F. Hutschka, J. Hafner, J. Am. Chem. Soc. 123, 2799 (2001)CrossRefGoogle Scholar
  32. 32.
    R.B. LaPierre, A.C. Rohrman Jr, J.L. Schlenker, J.D. Wood, M.K. Rubin, W.J. Rohrbaugh, Zeolites 5, 346 (1985)CrossRefGoogle Scholar
  33. 33.
    S. Kulprathipanja, Zeolites in Industrial Separation and Catalysis (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010)CrossRefGoogle Scholar
  34. 34.
    M.J. Rice, A.K. Chakraborty, A.T. Bell, J. Catal. 194, 278 (2000)CrossRefGoogle Scholar
  35. 35.
    M.W. Wong, Chem. Phys. Lett. 256, 391 (1996)CrossRefGoogle Scholar
  36. 36.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)CrossRefGoogle Scholar
  37. 37.
    I. Tezsevin, M.F. Fellah, I. Onal, Microporous Mesoporous Mater. 180, 102 (2013)CrossRefGoogle Scholar
  38. 38.
    R.H. Perry, D.W. Green, Perry’s Chemical Engineers Handbook, 7th edn. (McGraw-Hill International Editors, Sydney, 1997), Section 2Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringBursa Technical UniversityBursaTurkey

Personalised recommendations