Skip to main content
Log in

A new Al2O3 porous ceramic prepared by addition of hollow spheres

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A method for making porous ceramic prepared by adding hollow spheres was developed, and the resulting porous ceramic was named as hollow spheres ceramic. Water soluble epoxy resin was used as a gel former in the gelcasting process of the Al2O3 hollow sphere and Al2O3 powder, the porous ceramic porosity varies from 22.3 to 60.1 %. The influence of amount of Al2O3 hollow sphere and sintering temperature on the microstructure, compressive strength and thermal conductivity were investigated. With an increasing amount of hollow sphere in the matrix, the porosity increases, which leads to decreased bulk density, compressive strength and thermal conductivity. The compressive strength of the porous ceramics has a power law relation with the porosity, and the calculated power law index is 4.5. The equations of the relationship between porosity and thermal conductivity of porous ceramics are proposed. The thermal conductivity of samples with 60.1 % porosity is as low as 2.1 W/m k at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.R. Ismagilov, R.A. Shkrabina, N.A. Koryabkina, A.A. Kirchanov, H. Veringa, P. Pex, Porous alumina as a support for catalysts and membranes. Preparation and study. React. Kinet. Catal. Lett. 60, 225–231 (1997)

    Article  CAS  Google Scholar 

  2. Y.M. Jo, R.B. Hutchison, J.A. Raper, Characterization of ceramic composite membrane filters for hot gas cleaning. Powder Technol. 91, 55–62 (1997)

    Article  CAS  Google Scholar 

  3. P.M. Then, P. Day, The catalytic converter ceramic substrate: an astonishing and enduring invention. Interceram 49, 20–23 (2000)

    CAS  Google Scholar 

  4. M.I. Nieto, R. Martinez, M. Leo, C. Baudin, Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles. J. Eur. Ceram. Soc. 24, 2293–2301 (2004)

    Article  CAS  Google Scholar 

  5. H.R. Ramay, M.Q. Zhang, Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials 24, 3293–3302 (2003)

    Article  CAS  Google Scholar 

  6. O. Lyckfeldt, J.M.F. Ferreira, Processing of porous ceramics by ‘starch consolidation’. J. Eur. Ceram. Soc. 18, 131–140 (1998)

    Article  CAS  Google Scholar 

  7. J.L. Yu, J.L. Yang, H.X. Li, X.Q. Xi, Y. Huang, Study on particle-stabilized Si3N4 ceramic foams. Mater. Lett. 65, 1801–1804 (2011)

    Article  CAS  Google Scholar 

  8. J.M. Qian, J.P. Wang, G.J. Qiao, Z.H. Jin, Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. J. Eur. Ceram. Soc. 24, 3251–3259 (2004)

    Article  CAS  Google Scholar 

  9. H. Ghanem, M. Kormann, H. Gerhard, N. Popovska, Processing of biomorphic porous TiO2 ceramics by chemical vapor infiltration and reaction (CVI-R) technique. J. Eur. Ceram. Soc. 27, 3433–3438 (2007)

    Article  CAS  Google Scholar 

  10. D.A. Streitwieser, N. Popovska, H. Gerhard, Optimization of the ceramization process for the production of three-dimensional biomorphic porous SiC ceramics by chemical vapor infiltration (CVI). J. Eur. Ceram. Soc. 26, 2381–2387 (2006)

    Article  CAS  Google Scholar 

  11. L. Min, C. Jia, M. Jing, C. Xiao-Hu, W. Bin-Jian, Biomimetic synthesis of porous Si3N4 ceramics. J. Inorg. Mater. 23, 764–769 (2008)

    Google Scholar 

  12. O.P. Chakrabarti, H.S. Maiti, R. Majumdar, Biomimetic synthesis of cellular SiC based ceramics from plant precursor. Bull. Mater. Sci. 27, 467–470 (2004)

    Article  CAS  Google Scholar 

  13. Y.T. Zheng, H.B. Li, W. Zhou, X.N. Zhang, G.R. Ye, Combustion synthesis and characteristics of aluminum oxynitride ceramic foams. Ceram. Int. 38, 5139–5144 (2012)

    Article  CAS  Google Scholar 

  14. J.F. Qiu, J.T. Li, K.L. Smirnov, Combustion synthesis of high porosity SiC foam with nanosized grains. Ceram. Int. 36, 1901–1904 (2010)

    Article  CAS  Google Scholar 

  15. H.X. Peng, Z. Fan, J.R.G. Evans, J.J.C. Busfield, Microstructure of ceramic foams. J. Eur. Ceram. Soc. 20, 807–813 (2000)

    Article  CAS  Google Scholar 

  16. J. Luyten, S. Mullens, J. Cooymans, A.M.D. Wilde, I. Thijs, R. Kemps, Different methods to synthesize ceramic foams. J. Eur. Ceram. Soc. 29, 829–832 (2009)

    Article  CAS  Google Scholar 

  17. I. Thijs, J. Luyten, S. Mullens, Producing ceramic foams with hollow spheres. J. Am. Ceram. Soc. 87, 170–172 (2004)

    Article  CAS  Google Scholar 

  18. U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45, 3526–3530 (2006)

    Article  CAS  Google Scholar 

  19. U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Stabilization of foams with inorganic colloidal particles. Langmuir 22, 10983–10988 (2006)

    Article  CAS  Google Scholar 

  20. U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Macroporous ceramics from particle-stabilized wet foams. J. Am. Ceram. Soc. 90, 16–22 (2007)

    Article  CAS  Google Scholar 

  21. Yang JL, Cai K, Xi, XQ, Ge GJ, Huang Y. Method and device for producing hollow microspheres. China Invention Patent 200910131051.7; 2010

  22. J.S. Ha, Effect of atmosphere type on gelcasting behavior of Al2O3 and evaluation of green strength. Ceram. Int. 26, 251–254 (2000)

    Article  CAS  Google Scholar 

  23. X.J. Mao, S. Shimai, S.W. Wang, Effects of coarse particles on the gelcasting of ceramic foams. J. Am. Ceram. Soc. 91, 2412–2414 (2008)

    Article  CAS  Google Scholar 

  24. X.J. Mao, S. Shimai, S.W. Wang, Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28, 217–222 (2008)

    Article  CAS  Google Scholar 

  25. X.J. Mao, S. Shimai, S.W. Wang, M.J. Dong, L.L. Jin, Rheological characterization of a gelcasting system based on epoxy resin. Ceram. Int. 35, 415–420 (2009)

    Article  CAS  Google Scholar 

  26. M.L. Sun, The application and technics of epoxy resin (Mechanical Industry Press, China, 2002)

    Google Scholar 

  27. X.J. Mao, S.Z. Shimai, S.W. Wang, Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28, 217–222 (2008)

    Article  CAS  Google Scholar 

  28. Z. Zivcova, E. Gregorova, P. Willi, D.S. Smith, A. Michot, C. Poulier, Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. J. Eur. Ceram. Soc. 29, 347–353 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work is supported by the National Natural Science Fund (project number: 51172120) and special support for the innovation work of Ministry of Science and Technology (project number: 2011IM030800) and Shanxi Province Science and Technology Major Project of China (project number: 20111101015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Xi, X., Hu, Y. et al. A new Al2O3 porous ceramic prepared by addition of hollow spheres. J Porous Mater 21, 601–609 (2014). https://doi.org/10.1007/s10934-014-9806-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9806-7

Keywords

Navigation