Journal of Porous Materials

, Volume 21, Issue 5, pp 601–609 | Cite as

A new Al2O3 porous ceramic prepared by addition of hollow spheres

  • Zhenguo Su
  • Xiaoqing Xi
  • Yanjun Hu
  • Qi Fei
  • Shicheng Yu
  • Hui Li
  • Jinlong Yang


A method for making porous ceramic prepared by adding hollow spheres was developed, and the resulting porous ceramic was named as hollow spheres ceramic. Water soluble epoxy resin was used as a gel former in the gelcasting process of the Al2O3 hollow sphere and Al2O3 powder, the porous ceramic porosity varies from 22.3 to 60.1 %. The influence of amount of Al2O3 hollow sphere and sintering temperature on the microstructure, compressive strength and thermal conductivity were investigated. With an increasing amount of hollow sphere in the matrix, the porosity increases, which leads to decreased bulk density, compressive strength and thermal conductivity. The compressive strength of the porous ceramics has a power law relation with the porosity, and the calculated power law index is 4.5. The equations of the relationship between porosity and thermal conductivity of porous ceramics are proposed. The thermal conductivity of samples with 60.1 % porosity is as low as 2.1 W/m k at room temperature.


Al2O3 hollow spheres Porous ceramic Microstructure Compressive strength Thermal conductivity 



This research work is supported by the National Natural Science Fund (project number: 51172120) and special support for the innovation work of Ministry of Science and Technology (project number: 2011IM030800) and Shanxi Province Science and Technology Major Project of China (project number: 20111101015).


  1. 1.
    Z.R. Ismagilov, R.A. Shkrabina, N.A. Koryabkina, A.A. Kirchanov, H. Veringa, P. Pex, Porous alumina as a support for catalysts and membranes. Preparation and study. React. Kinet. Catal. Lett. 60, 225–231 (1997)CrossRefGoogle Scholar
  2. 2.
    Y.M. Jo, R.B. Hutchison, J.A. Raper, Characterization of ceramic composite membrane filters for hot gas cleaning. Powder Technol. 91, 55–62 (1997)CrossRefGoogle Scholar
  3. 3.
    P.M. Then, P. Day, The catalytic converter ceramic substrate: an astonishing and enduring invention. Interceram 49, 20–23 (2000)Google Scholar
  4. 4.
    M.I. Nieto, R. Martinez, M. Leo, C. Baudin, Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles. J. Eur. Ceram. Soc. 24, 2293–2301 (2004)CrossRefGoogle Scholar
  5. 5.
    H.R. Ramay, M.Q. Zhang, Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials 24, 3293–3302 (2003)CrossRefGoogle Scholar
  6. 6.
    O. Lyckfeldt, J.M.F. Ferreira, Processing of porous ceramics by ‘starch consolidation’. J. Eur. Ceram. Soc. 18, 131–140 (1998)CrossRefGoogle Scholar
  7. 7.
    J.L. Yu, J.L. Yang, H.X. Li, X.Q. Xi, Y. Huang, Study on particle-stabilized Si3N4 ceramic foams. Mater. Lett. 65, 1801–1804 (2011)CrossRefGoogle Scholar
  8. 8.
    J.M. Qian, J.P. Wang, G.J. Qiao, Z.H. Jin, Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. J. Eur. Ceram. Soc. 24, 3251–3259 (2004)CrossRefGoogle Scholar
  9. 9.
    H. Ghanem, M. Kormann, H. Gerhard, N. Popovska, Processing of biomorphic porous TiO2 ceramics by chemical vapor infiltration and reaction (CVI-R) technique. J. Eur. Ceram. Soc. 27, 3433–3438 (2007)CrossRefGoogle Scholar
  10. 10.
    D.A. Streitwieser, N. Popovska, H. Gerhard, Optimization of the ceramization process for the production of three-dimensional biomorphic porous SiC ceramics by chemical vapor infiltration (CVI). J. Eur. Ceram. Soc. 26, 2381–2387 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Min, C. Jia, M. Jing, C. Xiao-Hu, W. Bin-Jian, Biomimetic synthesis of porous Si3N4 ceramics. J. Inorg. Mater. 23, 764–769 (2008)Google Scholar
  12. 12.
    O.P. Chakrabarti, H.S. Maiti, R. Majumdar, Biomimetic synthesis of cellular SiC based ceramics from plant precursor. Bull. Mater. Sci. 27, 467–470 (2004)CrossRefGoogle Scholar
  13. 13.
    Y.T. Zheng, H.B. Li, W. Zhou, X.N. Zhang, G.R. Ye, Combustion synthesis and characteristics of aluminum oxynitride ceramic foams. Ceram. Int. 38, 5139–5144 (2012)CrossRefGoogle Scholar
  14. 14.
    J.F. Qiu, J.T. Li, K.L. Smirnov, Combustion synthesis of high porosity SiC foam with nanosized grains. Ceram. Int. 36, 1901–1904 (2010)CrossRefGoogle Scholar
  15. 15.
    H.X. Peng, Z. Fan, J.R.G. Evans, J.J.C. Busfield, Microstructure of ceramic foams. J. Eur. Ceram. Soc. 20, 807–813 (2000)CrossRefGoogle Scholar
  16. 16.
    J. Luyten, S. Mullens, J. Cooymans, A.M.D. Wilde, I. Thijs, R. Kemps, Different methods to synthesize ceramic foams. J. Eur. Ceram. Soc. 29, 829–832 (2009)CrossRefGoogle Scholar
  17. 17.
    I. Thijs, J. Luyten, S. Mullens, Producing ceramic foams with hollow spheres. J. Am. Ceram. Soc. 87, 170–172 (2004)CrossRefGoogle Scholar
  18. 18.
    U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45, 3526–3530 (2006)CrossRefGoogle Scholar
  19. 19.
    U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Stabilization of foams with inorganic colloidal particles. Langmuir 22, 10983–10988 (2006)CrossRefGoogle Scholar
  20. 20.
    U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Macroporous ceramics from particle-stabilized wet foams. J. Am. Ceram. Soc. 90, 16–22 (2007)CrossRefGoogle Scholar
  21. 21.
    Yang JL, Cai K, Xi, XQ, Ge GJ, Huang Y. Method and device for producing hollow microspheres. China Invention Patent 200910131051.7; 2010Google Scholar
  22. 22.
    J.S. Ha, Effect of atmosphere type on gelcasting behavior of Al2O3 and evaluation of green strength. Ceram. Int. 26, 251–254 (2000)CrossRefGoogle Scholar
  23. 23.
    X.J. Mao, S. Shimai, S.W. Wang, Effects of coarse particles on the gelcasting of ceramic foams. J. Am. Ceram. Soc. 91, 2412–2414 (2008)CrossRefGoogle Scholar
  24. 24.
    X.J. Mao, S. Shimai, S.W. Wang, Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28, 217–222 (2008)CrossRefGoogle Scholar
  25. 25.
    X.J. Mao, S. Shimai, S.W. Wang, M.J. Dong, L.L. Jin, Rheological characterization of a gelcasting system based on epoxy resin. Ceram. Int. 35, 415–420 (2009)CrossRefGoogle Scholar
  26. 26.
    M.L. Sun, The application and technics of epoxy resin (Mechanical Industry Press, China, 2002)Google Scholar
  27. 27.
    X.J. Mao, S.Z. Shimai, S.W. Wang, Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28, 217–222 (2008)CrossRefGoogle Scholar
  28. 28.
    Z. Zivcova, E. Gregorova, P. Willi, D.S. Smith, A. Michot, C. Poulier, Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. J. Eur. Ceram. Soc. 29, 347–353 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhenguo Su
    • 1
  • Xiaoqing Xi
    • 1
  • Yanjun Hu
    • 1
    • 2
  • Qi Fei
    • 1
  • Shicheng Yu
    • 1
  • Hui Li
    • 1
  • Jinlong Yang
    • 1
  1. 1.State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations