Journal of Porous Materials

, Volume 21, Issue 5, pp 531–537 | Cite as

Formation of pyridine N-oxides using mesoporous titanium silicalite-1

  • Jerrik Mielby
  • Jacob Oskar Abildstrøm
  • Susana Pérez-Ferreras
  • Søren Birk Rasmussen
  • Søren Kegnæs


Mesoporous titanium silicalite-1 (TS-1) prepared by carbon-templating is significantly more active than conventional TS-1 for the oxidation of pyridine derivatives using aqueous hydrogen peroxide as oxidant. The catalytic activity is increased by the system of mesopores that helps to overcome the configurational diffusion limitations within the microporous catalyst. The use of a carbon-template for generation of secondary porosity is more effective than desilication. The desilicated catalyst is slightly more active than conventional TS-1, probably due to a decrease of the mean diffusion path length. In contrast, carbon-templated mesopores provides an efficient transport throughout the zeolite, thus preventing deactivation due to product confinement. All catalysts were characterised by X-ray powder diffraction, scanning electron microscopy, UV–Vis spectroscopy and nitrogen physisorption. The results indicate that desilication may cause a surface densification of less catalytically active extra-framework Ti species. Carbon-templating is thus a more gentle and effective method for generating secondary porosity. Utilization of carbon-templated mesoporous TS-1 for oxidation of pyridine derivatives represents a new and environmentally friendly method to synthesise N-oxides.


Mesoporous TS-1 N-oxides Catalytic oxidation Carbon templating Desilication 



We gratefully acknowledge the support of the Danish Council for Independent Research, Grant No. 10-093717 and Grant No. 12-127580. We would also like to thank for support from the Spanish Ministry of Science and Innovation (project CTQ2011-25517), and Unidad de Apoyo from Catalysis Institute (ICP-CSIC).


  1. 1.
    B. Notari, Stud. Surf. Sci. Catal. 37, 413–425 (1988)CrossRefGoogle Scholar
  2. 2.
    M. Padovan, F. Genoni, G. Leofanti, G. Petrini, P. Roffia, A. Cesana, US Patent 4.968.842, (1990)Google Scholar
  3. 3.
    M. Taramasso, G. Perego, B. Notari, US Patent 4.410.501, (1983)Google Scholar
  4. 4.
    G. Bellussi, A. Carati, M. G. Clerici, A. Esposito, R. Millini, F. Buonomo, BE Patent 1.001.038, (1989)Google Scholar
  5. 5.
    D.P. Serrano, L. Hong-Xin, M.E. Davis, J. Chem. Soc. Chem. Commun. 10, 745–747 (1992)CrossRefGoogle Scholar
  6. 6.
    A. Camblor, A. Corma, A. Martinez, J. Pérez-Pariente, Zeolites 13, 82–87 (1993)CrossRefGoogle Scholar
  7. 7.
    M.A. Camblor, M. Costantini, A. Corma, L. Gilbert, P. Esteve, A. Martinez, S. Valencia, Chem. Commun. 11, 1339–1340 (1996)CrossRefGoogle Scholar
  8. 8.
    T. Blasco, M.A. Camblor, A. Corma, P. Esteve, J.M. Guil, A. Martinez, J.A. Perdigon-Melon, S. Valencia, J. Phys. Chem. B 102, 75–88 (1998)CrossRefGoogle Scholar
  9. 9.
    C. Perego, A. Carati, P. Ingallina, M.A. Mantegazza, G. Bellussi, Appl. Catal. A 221, 63–72 (2001)CrossRefGoogle Scholar
  10. 10.
    C. Madsen, C.J.H. Jacobsen, Chem. Commun. 673–674 (1999)Google Scholar
  11. 11.
    J.C. Groen, J.C. Jansen, J.A. Moulijn, J. Perez-Ramirez, J. Phys. Chem. B 108, 13062–13065 (2004)CrossRefGoogle Scholar
  12. 12.
    A.H. Janssen, I. Schmidt, C.J.H. Jacobsen, A.J. Koster, K.P. de Jong, Micropor. Mesopor. Mater. 65, 59–75 (2003)CrossRefGoogle Scholar
  13. 13.
    Y. Gao, H. Yoshitake, P. Wu, T. Tatsumi, Micropor. Mesopor. Mater. 70, 93–101 (2004)CrossRefGoogle Scholar
  14. 14.
    L. Chen, Y.M. Wang, M. He, Mater. Res. Bull. 46, 698–701 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Cheneviere, F. Chieux, V. Caps, A. Tuel, J. Catal. 269, 161–168 (2010)CrossRefGoogle Scholar
  16. 16.
    D.P. Serrano, R. Sanz, P. Pizarro, I. Moreno, App. Catal. A 435, 32–42 (2012)CrossRefGoogle Scholar
  17. 17.
    X. Wang, G. Li, W. Wang, C. Jin, Y. Chen, Micropor. Mesopor. Mat. 142, 494–502 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Fang, H. Hu, Catal. Commun. 8, 817–820 (2007)CrossRefGoogle Scholar
  19. 19.
    M.J. Verhoef, P.J. Kooyman, J.C. Van der Waal, M.S. Rigutto, J.A. Peters, H. Van Bekkum, Chem. Mater. 13, 683–687 (2001)CrossRefGoogle Scholar
  20. 20.
    D. Trong On, S. Kaliaguine, Angew. Chem. Int. Ed. 41, 1036–1040 (2002)CrossRefGoogle Scholar
  21. 21.
    K. Johannsen, A. Boisen, M. Brorson, I. Schmidt, C.J.H. Jacobsen, Stud. Surf. Sci. Catal. 142, 109–115 (2002)CrossRefGoogle Scholar
  22. 22.
    O. Kadlec, M.M. Dubinin, J. Colloid Interface Sci. 31, 479–489 (1969)CrossRefGoogle Scholar
  23. 23.
    C.V.G. Burgess, D.H. Everett, J. Colloid Interface Sci. 33, 611–614 (1970)CrossRefGoogle Scholar
  24. 24.
    J.C. Groen, L.A.A. Peffer, J. Pérez-Ramírez, Micropor. Mesopor. Mat. 60, 1–17 (2003)CrossRefGoogle Scholar
  25. 25.
    P. Ratnasamy, D. Srinivas, H. Knözinger, Adv. Catal. 48, 1–169 (2004)CrossRefGoogle Scholar
  26. 26.
    G. Petrini, A. Cesana, G. De Alberti, F. Genoni, G. Leofanti, M. Padovan, G. Paparatto, P. Rofia, Stud. Surf. Sci. Catal. 68, 761–766 (1991)CrossRefGoogle Scholar
  27. 27.
    M. Bandyopadhyay, A. Birkner, M.W.E. Van den Berg, K.V. Klementiev, W. Schmidt, W. Grunert, H. Gies, Chem. Mater. 17, 3820–3829 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jerrik Mielby
    • 1
  • Jacob Oskar Abildstrøm
    • 1
  • Susana Pérez-Ferreras
    • 2
  • Søren Birk Rasmussen
    • 1
    • 2
  • Søren Kegnæs
    • 1
  1. 1.Department of ChemistryTechnical University of DenmarkKgs.LyngbyDenmark
  2. 2.Instituto de Catálisis y Petroleoquímica (ICP)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain

Personalised recommendations