Journal of Porous Materials

, Volume 21, Issue 4, pp 401–411 | Cite as

Improvement in the pore structure of polybenzoxazine-based carbon xerogels through a silica templating method



Polybenzoxazine (PBZ) is synthesized by a facile quasi-solventless method within 1 h of synthesis time and less than 24 h of gelation time without any need of heating, and used as a carbon xerogel precursor. The pore structure of PBZ-based carbon xerogel is improved by using silica nanoparticles as hard templates. A mesoporous carbon xerogel with uniform pore is successfully synthesized. TGA, energy dispersive X-ray analysis, and field emission scanning electron microscope are used to confirm the successful incorporation of silica template into the microstructure of PBZ xerogel. Depending on the amount of silica template loading (10–50 % w/w), the specific surface area of carbon xerogel is improved to 518–899 m2/g, comparing to that of reference carbon xerogel of 362 m2/g. The standard adsorption isotherm of carbon xerogel is changed from type I to type IV after silica templating method is used. Extremely large amounts of meso- and total pore volume of 1.04–4.26 and 1.34–6.05 cm3/g, respectively, are obtained for carbon xerogel by the current method. In addition, the amount of micropore volume in carbon xerogel is not affected by silica template.

Graphical Abstract


Polybenzoxazine Carbon xerogel Silica nanoparticles Template 



This work has been financially supported by the Petroleum and Petrochemical College, and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University. In addition, the authors also would like to express their deep appreciation to the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (RES560530021-CC), for its financial support on this project.


  1. 1.
    F. Su, J. Zeng, X. Bao, Y. Yu, J.Y. Lee, X.S. Zhao, Chem. Mater. 17, 3960 (2005)CrossRefGoogle Scholar
  2. 2.
    H. Chang, S.H. Joo, C. Pak, J. Mater. Chem. 17, 3078 (2007)CrossRefGoogle Scholar
  3. 3.
    A.B. Fuertes, G. Lota, T.A. Centeno, E.E. Frackowiak, Electrochim. Acta 50, 2799 (2005)CrossRefGoogle Scholar
  4. 4.
    T.J. Levario, M. Dai, W. Yuan, B.D. Vogt, D.R. Nielsen, Micropor. Mesopor. Mater. 148, 107 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O. Terasaki, J. Phys. Chem. B 106, 1256 (2002)CrossRefGoogle Scholar
  6. 6.
    P. Karandikar, K.R. Patil, A. Mitra, B. Kakade, A.J. Chandwadkar, Micropor. Mesopor. Mater. 98, 189 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Han, T. Hyeon, Carbon 37, 1645 (1999)CrossRefGoogle Scholar
  8. 8.
    S. Han, T. Hyeon, Chem. Commun. 19, 1955 (1999)CrossRefGoogle Scholar
  9. 9.
    J. Gorka, M. Jaroniec, Carbon 49, 154 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Ning, H. Ishida, J. Polym. Sci., Part A: Polym. Chem. 32, 1121 (1994)CrossRefGoogle Scholar
  11. 11.
    N.N. Ghosh, B. Kiskan, Y. Yagci, Prog. Polym. Sci. 32, 1344 (2007)CrossRefGoogle Scholar
  12. 12.
    H. Ishida, D.J. Allen, Polymer 37, 4487 (1996)CrossRefGoogle Scholar
  13. 13.
    T. Agag, T. Takeichi, J. Polym. Sci., Part A: Polym. Chem. 45, 1878 (2007)CrossRefGoogle Scholar
  14. 14.
    H. Ishida, Overview and historical background of polybenzoxazine research, in Handbook of Benzoxazine Resins, ed. by H. Ishida, T. Agag (Elsevier, Amsterdam, 2011), pp. 3–81CrossRefGoogle Scholar
  15. 15.
    P. Katanyoota, T. Chaisuwan, A. Wongchaisuwat, S. Wongkasemjit, Mater. Sci. Eng., B 167, 36 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Chaisuwan, T. Komalwanich, S. Luangsukrerk, S. Wongkasemjit, Desalination 256, 108 (2010)CrossRefGoogle Scholar
  17. 17.
    U. Thubsuang, H. Ishida, S. Wongkasemjit, T. Chaisuwan, Micropor. Mesopor. Mater. 156, 7 (2012)CrossRefGoogle Scholar
  18. 18.
    P. Lorjai, T. Chaisuwan, S. Wongkasemjit, J. Sol-Gel. Sci. Technol. 52, 56 (2009)CrossRefGoogle Scholar
  19. 19.
    T. Chaisuwan, Porous materials from polybenzoxazine, in Handbook of Benzoxazine Resins, ed. by H. Ishida, T. Agag (Elsevier, Amsterdam, 2011), pp. 457–468CrossRefGoogle Scholar
  20. 20.
    G.P. Hao, W.C. Li, D. Qian, G.H. Wang, W.P. Zhang, T. Zhang, A.Q. Wang, F. Schuth, H.J. Bongard, A.H. Lu, J. Am. Chem. Soc. 133, 11378 (2011)CrossRefGoogle Scholar
  21. 21.
    D.A. Rubenstein, H.B. Lu, S.S. Mahadik, N. Leventis, W. Yin, J. Biomater. Sci. Polym. Ed. 23, 1171 (2012)Google Scholar
  22. 22.
    Y. Si, T. Ren, B. Ding, J.Y. Yu, G. Sun, J. Mater. Chem. 22, 4619 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Sevilla, A.B. Fuertes, Carbon 56, 155 (2013)CrossRefGoogle Scholar
  24. 24.
    D.C. Guo, J. Mi, G.P. Hao, W. Dong, G. Xiong, W.C. Li, A.H. Lu, Energy Environ. Sci. 6, 652 (2013)CrossRefGoogle Scholar
  25. 25.
    F. Cheng, S. Wang, A.H. Lu, W.C. Li, J. Power Sour. 229, 249 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Ishida, Process for preparation of benzoxazine compounds in solventless systems, US Patent 5543516 (1996)Google Scholar
  27. 27.
    T. Takeichi, T. Kano, T. Agag, Polymer 46, 12172 (2005)CrossRefGoogle Scholar
  28. 28.
    J. Kim, J. Lee, T. Hyeon, Carbon 42, 2711 (2004)CrossRefGoogle Scholar
  29. 29.
    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)CrossRefGoogle Scholar
  30. 30.
    B.C. Lippens, J.H. de Boer, J. Catal. 4, 319 (1965)CrossRefGoogle Scholar
  31. 31.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951)CrossRefGoogle Scholar
  32. 32.
    L.G. Joyner, E.P. Barrett, R. Skold, J. Am. Chem. Soc. 73, 3155 (1951)CrossRefGoogle Scholar
  33. 33.
    D. Wu, R. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44, 675 (2006)CrossRefGoogle Scholar
  34. 34.
    H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 37, 2049 (1999)CrossRefGoogle Scholar
  35. 35.
    J. Wang, X. Yang, D. Wu, R. Fu, M.S. Dresselhaus, G. Dresselhaus, J. Power Sour. 185, 589 (2008)CrossRefGoogle Scholar
  36. 36.
    D. Wu, R. Fu, S. Zhang, M.S. Dresselhaus, G. Dresselhaus, Carbon 42, 2033 (2004)CrossRefGoogle Scholar
  37. 37.
    F. Rouquerol, J. Rouquerol, K.W.S. Sing, Adsorption by Powders and Porous Solids, Principles, Methodology and Applications (Academic Press, London, 1999)Google Scholar
  38. 38.
    N. Job, F. Panariello, J. Marien, M. Crine, J.-P. Pirard, A. Leonard, J. Non-Cryst, Solids 352, 24 (2006)Google Scholar
  39. 39.
    E.G. Calvo, E.J. Juarez-Perez, J.A. Menendez, A. Arenillas, J. Colloid Interface Sci. 357, 541 (2011)CrossRefGoogle Scholar
  40. 40.
    H. Tamon, H. Ishizaka, T. Araki, M. Okazaki, Carbon 36, 1257 (1998)CrossRefGoogle Scholar
  41. 41.
    N. Job, A. Thery, R. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, F. Beguin, J.-P. Pirard, Carbon 43, 2481 (2005)CrossRefGoogle Scholar
  42. 42.
    L. Zubizarreta, A. Arenillas, J.A. Menendez, J.J. Pis, J.-P. Pirard, N. Job, J. Non-Cryst, Solids 354, 4024 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials TechnologyChulalongkorn UniversityBangkokThailand
  2. 2.Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations