Skip to main content
Log in

Influences of heat-treatment on the microstructure and properties of silica–titania composite aerogels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Silica–titania composite aerogels were synthesized via ambient pressure drying by using water glass and titanium tetrachloride as raw materials. The influences of heat-treatment at different temperature with different heating rate on the microstructure and properties of the composite aerogels were investigated by differential thermal analyzer, Fourier transform infrared spectrometer, X-ray diffraction, nitrogen adsorption–desorption, scanning electron microscope and transmission electron microscope analysis. The results indicate that the silica–titania composite aerogels heat-treated at 250 °C exhibited highest specific surface area, pore volume and average pore diameter. When the heat-treatment temperature was higher than 450 °C, the –CH3 groups on the surface of silica–titania composite aerogels would transform into –OH groups gradually, and in the meantime, the composite aerogels network structure would be destroyed gradually and the crystallinity of TiO2 would be improved with the increase of heat-treatment temperature. Particularly, heat-treatment at temperatures above 750 °C would cause serious damage to the network structure of the composite aerogels. The adsorption/photocatalytic activity experiments showed that the composite aerogels heat-treated at 550 °C exhibit highest darkroom adsorption efficiency, and the 650 °C-heat-treated samples exhibited highest efficiency for removing the Rhodamine B from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Duan, S.C. Jana, A.M. Reinsel, B. Lama, M.P. Espe, Langmuir 28, 15362 (2012)

    Article  CAS  Google Scholar 

  2. H. Satha, K. Atamnia, F. Despetis, J. Biomater. Nanotechnol. 4, 17 (2013)

    Google Scholar 

  3. I.K. Jung, J.L. Gurav, T.J. Ha, S.G. Choi, S. Baek, H.H. Park, Ceram. Int. 38, 105 (2012)

    Article  Google Scholar 

  4. J.L. Gurav, I. Jung, J. Nanomater. 2010, 23 (2010)

    Article  Google Scholar 

  5. G.M. Gao, X.C. Xu, H.F. Zou, G.J. Ji, S.C. Gan, Powder Technol. 202, 137 (2010)

    Article  CAS  Google Scholar 

  6. S.L. Lee, H. Nur, S.C. Wei, Appl. Mech. Mater. 110, 457 (2012)

    Google Scholar 

  7. U.K. Nizar, J. Efendi, L. Yuliati, D. Gustiono, H. Nur, Chem. Eng. J. 222, 23 (2013)

    Article  CAS  Google Scholar 

  8. M.A. Reiche, E. Ortelli, A. Baiker, Appl. Catal. B Environ. 23, 187 (1999)

    Article  CAS  Google Scholar 

  9. P. Klankaw, C. Chawengkijwanich, N. Grisdanurak, S. Chiarakorn, Superlattices Microstruct. 51, 343 (2012)

    Article  CAS  Google Scholar 

  10. M. Liu, L. Gan, Y. Pang, Z. Xu, Z. Hao, Colloids. Surf. A Physicochem. Eng. Asp. 317, 490 (2008)

    Article  CAS  Google Scholar 

  11. S.V. Ingale, P.U. Sastry, P.B. Wagh, A.K. Tripathi, R. Rao, R. Tewari, S.C. Gupta, Mater. Chem. Phy. 135, 497 (2012)

    Article  CAS  Google Scholar 

  12. G.N. Shao, A. Hilonga, S.J. Jeon, J.E. Lee, G. Elineema, D.V. Quang, Powder Technol. 233, 123 (2013)

    Article  CAS  Google Scholar 

  13. P.R. Aravind, P. Shajesh, P. Mukundan, K.G.K. Warrier, J. Sol-Gel Sci. Technol. 52, 328 (2009)

    Article  CAS  Google Scholar 

  14. J. Liu, X. Leng, F. Shi, J. Ceram. Soc. 38, 2296 (2010). (in Chinese)

    CAS  Google Scholar 

  15. S. Cao, K.L. Yeung, P.L. Yue, Appl. Catal. B Environ. 68, 99 (2006)

    Article  CAS  Google Scholar 

  16. X. Leng, J. Liu, F. Shi, J. Inorg. Chem. 25, 1791 (2009). (in Chinese)

    CAS  Google Scholar 

  17. F. Shi, L. Wang, J. Liu, M. Zeng, J. Mater. Sci. Technol. 23, 402 (2007)

    CAS  Google Scholar 

  18. J. Lin, H. Chen, T. Fei, Appl. Surf. Sci. 273, 776 (2013)

    Article  CAS  Google Scholar 

  19. C. Huang, Z. Wei, L. Zhang, J. Porous. Mater. 20, 1017 (2013)

    Article  CAS  Google Scholar 

  20. P.V. Messina, P.C. Schulz, J. Colloid. Interface Sci. 299, 305 (2006)

    Article  CAS  Google Scholar 

  21. L. Melonea, L. Altomare, I. Alfieri, A. Lorenz, J. Photochem. Photobiol. A Chem. 261, 53 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of the National Natural Science Foundation of China (No. 51278074), the Project of Dalian Science & Technology Foundation (2007J23JH014), and Dalian City Construction Science & Technology Project (20111228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Liu, J., Shi, F. et al. Influences of heat-treatment on the microstructure and properties of silica–titania composite aerogels. J Porous Mater 21, 293–301 (2014). https://doi.org/10.1007/s10934-013-9774-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9774-3

Keywords

Navigation