Journal of Porous Materials

, Volume 21, Issue 3, pp 293–301 | Cite as

Influences of heat-treatment on the microstructure and properties of silica–titania composite aerogels

  • Xiaoka Wang
  • Jingxiao Liu
  • Fei Shi
  • Suhua Liu
  • Xiang Feng
  • Lei Bao


Silica–titania composite aerogels were synthesized via ambient pressure drying by using water glass and titanium tetrachloride as raw materials. The influences of heat-treatment at different temperature with different heating rate on the microstructure and properties of the composite aerogels were investigated by differential thermal analyzer, Fourier transform infrared spectrometer, X-ray diffraction, nitrogen adsorption–desorption, scanning electron microscope and transmission electron microscope analysis. The results indicate that the silica–titania composite aerogels heat-treated at 250 °C exhibited highest specific surface area, pore volume and average pore diameter. When the heat-treatment temperature was higher than 450 °C, the –CH3 groups on the surface of silica–titania composite aerogels would transform into –OH groups gradually, and in the meantime, the composite aerogels network structure would be destroyed gradually and the crystallinity of TiO2 would be improved with the increase of heat-treatment temperature. Particularly, heat-treatment at temperatures above 750 °C would cause serious damage to the network structure of the composite aerogels. The adsorption/photocatalytic activity experiments showed that the composite aerogels heat-treated at 550 °C exhibit highest darkroom adsorption efficiency, and the 650 °C-heat-treated samples exhibited highest efficiency for removing the Rhodamine B from water.


Silica–titania composite aerogels Mesoporous Ambient pressure drying Heat-treatment Adsorption/photocatalytic activity Crystallinity 



We are grateful for the financial support of the National Natural Science Foundation of China (No. 51278074), the Project of Dalian Science & Technology Foundation (2007J23JH014), and Dalian City Construction Science & Technology Project (20111228).


  1. 1.
    Y. Duan, S.C. Jana, A.M. Reinsel, B. Lama, M.P. Espe, Langmuir 28, 15362 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Satha, K. Atamnia, F. Despetis, J. Biomater. Nanotechnol. 4, 17 (2013)Google Scholar
  3. 3.
    I.K. Jung, J.L. Gurav, T.J. Ha, S.G. Choi, S. Baek, H.H. Park, Ceram. Int. 38, 105 (2012)CrossRefGoogle Scholar
  4. 4.
    J.L. Gurav, I. Jung, J. Nanomater. 2010, 23 (2010)CrossRefGoogle Scholar
  5. 5.
    G.M. Gao, X.C. Xu, H.F. Zou, G.J. Ji, S.C. Gan, Powder Technol. 202, 137 (2010)CrossRefGoogle Scholar
  6. 6.
    S.L. Lee, H. Nur, S.C. Wei, Appl. Mech. Mater. 110, 457 (2012)Google Scholar
  7. 7.
    U.K. Nizar, J. Efendi, L. Yuliati, D. Gustiono, H. Nur, Chem. Eng. J. 222, 23 (2013)CrossRefGoogle Scholar
  8. 8.
    M.A. Reiche, E. Ortelli, A. Baiker, Appl. Catal. B Environ. 23, 187 (1999)CrossRefGoogle Scholar
  9. 9.
    P. Klankaw, C. Chawengkijwanich, N. Grisdanurak, S. Chiarakorn, Superlattices Microstruct. 51, 343 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Liu, L. Gan, Y. Pang, Z. Xu, Z. Hao, Colloids. Surf. A Physicochem. Eng. Asp. 317, 490 (2008)CrossRefGoogle Scholar
  11. 11.
    S.V. Ingale, P.U. Sastry, P.B. Wagh, A.K. Tripathi, R. Rao, R. Tewari, S.C. Gupta, Mater. Chem. Phy. 135, 497 (2012)CrossRefGoogle Scholar
  12. 12.
    G.N. Shao, A. Hilonga, S.J. Jeon, J.E. Lee, G. Elineema, D.V. Quang, Powder Technol. 233, 123 (2013)CrossRefGoogle Scholar
  13. 13.
    P.R. Aravind, P. Shajesh, P. Mukundan, K.G.K. Warrier, J. Sol-Gel Sci. Technol. 52, 328 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Liu, X. Leng, F. Shi, J. Ceram. Soc. 38, 2296 (2010). (in Chinese)Google Scholar
  15. 15.
    S. Cao, K.L. Yeung, P.L. Yue, Appl. Catal. B Environ. 68, 99 (2006)CrossRefGoogle Scholar
  16. 16.
    X. Leng, J. Liu, F. Shi, J. Inorg. Chem. 25, 1791 (2009). (in Chinese)Google Scholar
  17. 17.
    F. Shi, L. Wang, J. Liu, M. Zeng, J. Mater. Sci. Technol. 23, 402 (2007)Google Scholar
  18. 18.
    J. Lin, H. Chen, T. Fei, Appl. Surf. Sci. 273, 776 (2013)CrossRefGoogle Scholar
  19. 19.
    C. Huang, Z. Wei, L. Zhang, J. Porous. Mater. 20, 1017 (2013)CrossRefGoogle Scholar
  20. 20.
    P.V. Messina, P.C. Schulz, J. Colloid. Interface Sci. 299, 305 (2006)CrossRefGoogle Scholar
  21. 21.
    L. Melonea, L. Altomare, I. Alfieri, A. Lorenz, J. Photochem. Photobiol. A Chem. 261, 53 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xiaoka Wang
    • 1
  • Jingxiao Liu
    • 1
  • Fei Shi
    • 1
  • Suhua Liu
    • 1
  • Xiang Feng
    • 1
  • Lei Bao
    • 1
  1. 1.Department of Materials Science and EngineeringDalian Polytechnic UniversityDalianPeople’s Republic of China

Personalised recommendations