Journal of Porous Materials

, Volume 21, Issue 2, pp 149–155 | Cite as

Efficient cyclohexyl acrylate production by direct addition of acrylic acid and cyclohexene over SBA-15-SO3H



A set of propysulfonic acid modified mesostructured silica materials (SBA-15-SO3H) were prepared by a convenient one-pot co-condensation method. Samples were characterized by XRD, FT-IR, Py-FTIR, N2 adsorption–desorption, elemental analysis and acid–base titration. The catalysts exhibited excellent activities and selectivities for addition esterification of acrylic acid and cyclohexene. The highest catalytic activity (82.8 %) and selectivity (92.6 %) were obtained over SBA-15-SO3H (15 %). The efficient catalytic performance of SBA-15-SO3H (15 %) was attributed to the high surface area, proper mesopore texture and presence of sulfonic acid groups in its structure. SBA-15-SO3H catalyst was easily separated and recycled with high stability.


Addition esterification Cyclohexyl acrylate Solid acid catalyst SBA-15-SO3



This work was financial supported by National Natural Science Foundation of China (Project No. 21276126), Jiangsu Province Higher Education Natural Science Foundation (Project No. 09KJA530004) and Prospective Joint Research Project of Jiangsu Province (Project No. BY2011105).


  1. 1.
    A. Bulai, M.L. Jimeno, J.S. Roman, Macromolecules 28, 7363 (1995)CrossRefGoogle Scholar
  2. 2.
    J. Lilja, D.Y. Murzin, T. Salmi, J. Aumo, P.M. Arvela, M. Sundell, J. Mol. Catal. A Chem. 182, 555 (2002)CrossRefGoogle Scholar
  3. 3.
    K. Tanabe, Appl. Catal. A Gen. 113, 147 (1994)CrossRefGoogle Scholar
  4. 4.
    E.V. Spinacé, J.M. Vaz, Catal. Commun. 4, 91 (2003)CrossRefGoogle Scholar
  5. 5.
    H. Nagahara, M. Ono, M. Konishi, Appl. Surf. Sci. 121, 48 (1997)Google Scholar
  6. 6.
    J.C. Choi, K. Kohno, D. Masuda, H. Yasuda, T. Sakakura. Chem. Commun. 44, 777 (2008)CrossRefGoogle Scholar
  7. 7.
    G. Jignesh, M. Surendra, M. Sanjay, Ind. Eng. Chem. Res. 42, 2146 (2003)CrossRefGoogle Scholar
  8. 8.
    R. Kumar, A. Katariya, H. Freund, Org. Process Res. Dev. 15, 527 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Yamamoto, S. Hatanaka, K. Tsuji, Appl. Catal. A Gen. 344, 55 (2008)CrossRefGoogle Scholar
  10. 10.
    V. Hugues, M.E. Road, Pluakdaeng, W.O. Patent 2006087297A1 (2006)Google Scholar
  11. 11.
    J.A. Melero, R.V. Grieken, G. Morales, Chem. Rev. 106, 3790 (2006)CrossRefGoogle Scholar
  12. 12.
    R.I. Kureshy, I. Ahmad, N.H. Khan, S.H.R. Abdi, K. Pathak, R.V. Jasra, J. Catal. 238, 134 (2006)CrossRefGoogle Scholar
  13. 13.
    M.E. Davis, Nature 417, 813 (2002)CrossRefGoogle Scholar
  14. 14.
    B.P. Wu, Z.W. Tong, X.D. Yuan, J. Porous Mater. 18, 475 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Park, T.J. Kim, Y.M. Chung, S.H. Oh, I.K. Song, Catal. Lett. 130, 296 (2009)CrossRefGoogle Scholar
  16. 16.
    J.A. Melero, R.V. Grieken, G. Morales, V. Nuno, Catal. Commun. 5, 131 (2004)CrossRefGoogle Scholar
  17. 17.
    J. Pérez-Pariente, I. D′ıaz, F. Mohino, E. Sastre, Appl. Catal. A Gen. 254, 173 (2003)CrossRefGoogle Scholar
  18. 18.
    X.C. Guo, Z.F. Qin, W.B. Fan, G.F. Wang, R.H. Zhao, S.Y. Peng, J.G. Wang, Catal. Lett. 128, 405 (2009)CrossRefGoogle Scholar
  19. 19.
    J.P. Dacquin, A.F. Lee, C. Pirez, K. Wilson, Chem. Commun. 48, 212 (2012)CrossRefGoogle Scholar
  20. 20.
    M.A. Naik, D. Sachdev, A. Dubey, Catal. Commun. 11, 1148 (2010)CrossRefGoogle Scholar
  21. 21.
    R.I. Kureshy, I. Ahmad, K. Pathak, N.K. Khan, S.H.R. Abdi, R.V. Jasra, Catal. Commun. 10, 572 (2009)CrossRefGoogle Scholar
  22. 22.
    X.Y. Liu, L. Zhu, T. Zhao, J.F. Lan, W.F. Yan, H.X. Zhang, Micropor. Mesopor. Mater. 142, 614 (2011)CrossRefGoogle Scholar
  23. 23.
    S.J. Miao, B.H. Shanks, Appl. Catal. A Gen. 359, 113 (2009)CrossRefGoogle Scholar
  24. 24.
    J.K. Shon, X.D. Yuan, C.H. Ko, H.I. Lee, S.S. Thakur, M. Kang, M.S. Kang, D.H. Li, J.N. Kim, J. Ind. Eng. Chem. 13, 1201 (2007)Google Scholar
  25. 25.
    D. Margolese, J.E. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Chem. Mater. 12, 2448 (2000)CrossRefGoogle Scholar
  26. 26.
    J. Machado, J.E. Castanheiro, I. Matos, A.M. Ramos, J. Vital, I.M. Fonseca, Micropor. Mesopor. Mater. 163, 237 (2012)CrossRefGoogle Scholar
  27. 27.
    S.J. Miao, B.H. Shanks, J. Catal. 279, 136 (2011)CrossRefGoogle Scholar
  28. 28.
    B. Sow, S. Hamoudi, M.H. Zahedi-Niaki, S. Kaliaguine, Micropor. Mesopor. Mater. 79, 129 (2005)CrossRefGoogle Scholar
  29. 29.
    D. Das, J.F. Lee, S. Cheng, Chem. Commun. 21, 2178 (2001)CrossRefGoogle Scholar
  30. 30.
    S. Shylesh, P.P. Samuel, Ch. Srilakshmi, R. Parischa, A.P. Singh, J. Mol. Catal. A Chem. 274, 153 (2007)CrossRefGoogle Scholar
  31. 31.
    J.C. Juan, J.C. Zhang, M.A. Yarmo, Catal. Lett. 126, 319 (2008)CrossRefGoogle Scholar
  32. 32.
    S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, J. Am. Chem. Soc. 62, 1723 (1940)CrossRefGoogle Scholar
  33. 33.
    J.A. Melero, G.D. Stucky, R.V. Grieken, G. Morales, J. Mater. Chem. 12, 1664 (2002)CrossRefGoogle Scholar
  34. 34.
    B. Dragoi, E. Dumitriu, C. Guimon, A. Auroux, Micropor. Mesopor. Mater. 121, 7 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Industrial Water-Conservation and Emission Reduction, College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China
  2. 2.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations