Journal of Porous Materials

, Volume 21, Issue 2, pp 131–140 | Cite as

Sintered metallic foams for biodegradable bone replacement materials

  • Andrej Oriňák
  • Renáta Oriňáková
  • Zuzana Orságová Králová
  • Andrea Morovská Turoňová
  • Miriam Kupková
  • Monika Hrubovčáková
  • Jozef Radoňák
  • Róbert Džunda


The iron open cell foams were synthesized by the replication method based on powder metallurgical technologies as biodegradable bone replacement material. Open cell metal foams provide extraordinary combinations of the properties. Samples containing carbon nanotubes (CNTs) and Mg were produced with the aim to affect degradation rate and enhance the biocompatibility. The microstructure, corrosion behaviour and in vitro biocompatibilities were investigated by scanning electron microscopy, immersion tests in Hank’s solution during the time of 8 weeks, cytotoxicity and haemolysis tests. The addition of CNTs and Mg induced the higher surface inhomogeneity and roughness, which was more pronounced for Fe–Mg sample. The homogenous degradation on the whole surface was registered for bare iron sample, while progressive local corrosion sites were found on the surface of samples with CNTs and Mg. Highest corrosion rate was determined for Fe–Mg sample which came to be disintegrated after 3 weeks of immersion. The slowest degradation rate was detected for Fe–CNTs sample. The fast dieback of fibroblast cells was registered under static conditions in monolayer cell culture. However, all the experimental samples were found to be highly haemocompatible. Additionally, the haemolysis percentage value of about 2 % determined for Fe–Mg sample proved its good performance for blood vessel related cellular application.


Open cell foams Carbonyl iron Powder metallurgy Haemocompatibility Biocompatibility 



This work was supported by the Projects APVV-0677-11 and APVV-0280-11 of the Slovak Research and Development Agency and Project VEGA 1/0211/12 of the Slovak Scientific Grant Agency.


  1. 1.
    A. Purnama, H. Hermawan, J. Couet, D. Mantovani, Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomater. 6, 1800 (2010)Google Scholar
  2. 2.
    B. Wegener, B. Sievers, S. Utzschneider, P. Müller, V. Jansson, S. Rößler, B. Nies, G. Stephani, B. Kieback, P. Quadbeck, Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater. Sci. Eng. B 176, 1789 (2011)CrossRefGoogle Scholar
  3. 3.
    H. Hermawan, D. Mantovani, Degradable metallic biomaterials: the concept, current developments and future directions. Minerva Biotechnol. 21, 207 (2009)Google Scholar
  4. 4.
    A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. Abdul Kadir, H. Hermawan, Porous biodegradable metals for hard tissue scaffolds: a review. Int. J. Biomater. Article ID 641430, p 10 (2012)Google Scholar
  5. 5.
    P. Quadbeck, G. Stephani, K. Kümmel, J. Adler, G. Standke, Synthesis and properties of open-celled metal foams. Mat. Sci. Forum. 534/536, 1005 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Song, Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49/4, 1696 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Schinhammer, A.C. Hanzi, J.F. Loffler, P.J. Uggowitzer, Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 6, 1705 (2010)Google Scholar
  8. 8.
    H. Hermawan, H. Alamdari, D. Mantovani, D. Dube, Iron-manganese: new class of degradable metallic biomaterials prepared by powder metallurgy. Powder Metall. 51, 38 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Xin, C. Liu, X. Zhang, G. Tang, X. Tian, P.K. Chu, Corrosion behaviour of biomedical AZ91 magnesium alloy in simulated body fluids. J. Mater. Res. 22, 2004 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Levesque, H. Hermawan, D. Dube, D. Mantovani, Design of a pseudophysiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater. 4, 284 (2008)Google Scholar
  11. 11.
    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A.M. Linderberg, C.J. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf, A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86, 563 (2001)CrossRefGoogle Scholar
  13. 13.
    J. Farack, C. Wolf-Brandstetter, S. Glorius, B. Nies, G. Standke, P. Quadbeck, H. Worch, D. Scharnweber, The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on biocorrodible bone replacement material. Mater. Sci. Eng. B 176, 1767 (2011)CrossRefGoogle Scholar
  14. 14.
    T.L. Nguyen, M.P. Staiger, G.J. Dia, T.B.F. Woodfield, A novel manufacturing route for fabrication of topologically-ordered porous magnesium scaffolds. Adv. Eng. Mater. 13, 872 (2011)CrossRefGoogle Scholar
  15. 15.
    L. Tan, M. Gong, F. Zheng, B. Zhang, K. Yang, Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Biomed. Mater. 4, Article ID 015016 (2009)Google Scholar
  16. 16.
    S.C. Keal, K. Vince, M.A. Hodgson, Biodegradable surgical implants based on magnesium alloys—a review of current research. IOP Conf. Ser. Mater. Sci. Eng. 4, 012011 (2009)CrossRefGoogle Scholar
  17. 17.
    M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopaedic biomaterials: a review. Biomaterials 27, 1728 (2006)CrossRefGoogle Scholar
  18. 18.
    L. Li, J. Gao, Y. Wang, Evaluation of cytotoxicity and corrosion behavior of alkaliheat-treated magnesium in simulated body fluid. Surf. Coat. Technol. 185, 92 (2004)CrossRefGoogle Scholar
  19. 19.
    G.B. Stroganov, E. Savitsky, T. Mikhailovich, M. Nina, V. Terekhova, V. Fedorovna, Magnesium-base alloys for use in bone surgery. US Patent no. 3, 687, 135 (1972)Google Scholar
  20. 20.
    Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, N. Matsuura, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J. Biomed. Mater. Res. 62, 99 (2002)CrossRefGoogle Scholar
  21. 21.
    H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62, 175 (2002)CrossRefGoogle Scholar
  22. 22.
    P.A. Tran, L. Zhang, T.J. Webster, Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Deliv. Rev. 61, 1097 (2009)CrossRefGoogle Scholar
  23. 23.
    K. Sahithi, M. Swetha, K. Ramasamy, N. Srinivasan, N. Selvamurugan, Polymeric composites containing carbon nanotubes for bone tissue engineering. Int. J. Biol. Macromol. 46, 281 (2010)CrossRefGoogle Scholar
  24. 24.
    T. Shokuhfar, A. Makradi, E. Titus, G. Cabral, S. Ahzi, A.C. Sousa, S. Belouettar, J. Gracio, Prediction of the mechanical properties of HA/PNMA/CNTs nano-composite. J. Nanosci. Nanotechnol. 8, 4279 (2008)CrossRefGoogle Scholar
  25. 25.
    L.P. Zanello, B. Zhao, H. Hu, R.C. Haddon, Bone cell proliferation on carbon nanotubes. Nano Lett. 6, 562 (2006)CrossRefGoogle Scholar
  26. 26.
    W. Tutak, K.H. Park, A. Vasilov, V. Starovoytov, G. Fanchini, S.Q. Cai, N.C. Partridge, F. Sesti, M. Chhowalla, Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks. Nanotechnology 20, 255101 (2009)CrossRefGoogle Scholar
  27. 27.
    B. Sitharaman, X. Shi, L.A. Tran, P.P. Spicer, I. Rusakova, L.J. Wilson, A.G. Mikos, Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 18, 655 (2007)CrossRefGoogle Scholar
  28. 28.
    J.J. Jacobs, J.L. Gilbert, R.M. Urban, Current concepts review—corrosion of metal orthopaedic implants. J. Bone Joint Surg. Am. 80, 268 (1998)Google Scholar
  29. 29.
    G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27, 2651 (2006)CrossRefGoogle Scholar
  30. 30.
    P. Quadbeck, R. Hauser, K. Kümmel, G. Standke, G. Stephani, B. Nies, S. Rößler, B. Wegener, Iron based cellular metals for degradable synthetic bone replacement. Proceedings of the Powder Metallurgy World Congress (PM’10), Florence, Italy (2010)Google Scholar
  31. 31.
    C.S.Y. Jee, Z.X. Guo, J.R.G. Evans, N. Özgüven, Preparation of high porosity metal foams. Metall. Mater. Trans. B 31, 1345 (2000)CrossRefGoogle Scholar
  32. 32.
    T. Murakami, K. Ohara, T. Narushima, C. Ouchi, Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Mater. Trans. 48, 2937 (2007)CrossRefGoogle Scholar
  33. 33.
    J. Banhart, Manufacture, characterisation and application of cellular metals and metallic foams. Prog. Mater Sci. 46, 559 (2001)CrossRefGoogle Scholar
  34. 34.
    X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Liu, Y.X. Li, Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Mater. Lett. 64, 1871 (2010)CrossRefGoogle Scholar
  35. 35.
    F. Witte, H. Ulrich, M. Rudert, E. Willbold, Biodegradable magnesium scaffolds: part I: appropriate inflammatory response. J. Biomed. Mater. Res. A 81, 748 (2007)CrossRefGoogle Scholar
  36. 36.
    W. Khan, M. Kapoor, N. Kumar, Covalent attachment of proteins to functionalized polypyrrole-coated metallic surfaces for improved biocompatibility. Acta Biomater. 3, 541 (2007)Google Scholar
  37. 37.
    W.G. Brodbeck, M.S. Shive, E. Colton, Y. Nakayama, T. Matsuda, J.M. Anderson, Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J. Biomed. Mater. Res. 55, 661 (2001)CrossRefGoogle Scholar
  38. 38.
    Y. Li, K.G. Neoh, E.T. Kang, Plasma protein adsorption and thrombus formation on surface functionalized polypyrrole with and without electrical stimulation. J. Colloid Interf. Sci. 275, 488 (2004)CrossRefGoogle Scholar
  39. 39.
    S. Torgerson, N.R. Gjerdet, Retrieval study of stainless steel and titanium miniplates and screws used in maxillofacial surgery. J. Mater. Sci. Mater. Med. 5, 256 (1994)CrossRefGoogle Scholar
  40. 40.
    M. Schinhammer, J. Hofstetter, C. Wegmann, F. Moszner, J. Löffler, P.J. Uggowitzer, On the immersion testing of degradable implant materials in simulated body fluid: active pH regulation using CO2. Adv. Eng. Mater. 15, 434 (2013)CrossRefGoogle Scholar
  41. 41.
    B. Liu, Y.F. Zheng, Effects of alloying elements (Mn Co., Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 7, 1407 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrej Oriňák
    • 1
  • Renáta Oriňáková
    • 1
  • Zuzana Orságová Králová
    • 1
  • Andrea Morovská Turoňová
    • 1
  • Miriam Kupková
    • 2
  • Monika Hrubovčáková
    • 2
  • Jozef Radoňák
    • 3
  • Róbert Džunda
    • 2
  1. 1.Department of Physical Chemistry, Faculty of Science, Institute of ChemistryP.J. Šafárik University in KošiceKošiceSlovak Republic
  2. 2.Institute of Materials ResearchSlovak Academy of SciencesKošiceSlovak Republic
  3. 3.Faculty of MedicineP.J. Šafárik University in KošiceKošiceSlovak Republic

Personalised recommendations