Journal of Porous Materials

, Volume 21, Issue 1, pp 105–112 | Cite as

Preparation and characterization of the continuous titanium-doped ZrO2 mesoporous fibers with large surface area

  • Gang Yu
  • Luyi Zhu
  • Guanglei Zhang
  • Guoqiang Qin
  • Hua Fu
  • Fengqiu Ji
  • Jinjin Zhao


The continuous titanium-doped ZrO2 mesoporous fibers with a large surface area (190 m2 g−1, TZ50-400) have been prepared by the sol–gel method coupled with the chemical template route. In the formation process, the self-induced acid environment of ZrOCl2·8H2O in ethanol solution was utilized to avoid a rapid hydrolysis process and the viscous sol precursors were successfully obtained for spinning fibers. X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectra were used to study the chemical environment of surface Ti(IV) and Zr((IV)) ions. The findings disclose that the partial Ti atoms (less than 30 %) enter into the ZrO2 lattice and occupy the positions of Zr atoms, while the excess Ti atoms construct the linear Ti–O–Ti chains inside the extra framework, being favorable to prevent the collapse of meso structure.


Zirconia mesoporous fibers Sol–gel Hydrolysis-condensation process Dry-spinning 



The authors gratefully appreciate the financial support from Hebei Provincial Natural Science Foundation (E2013210036, E2012210015), National Natural Science Foundation(51102172), the Nature Science Foundation of Hebei Education Department (No.Y 2011112) and National key laboratory open project fund (SKL201105SIC) .


  1. 1.
    K.R. Sridhar, J.A. Blanchard, Sens. Actuators B 59, 60 (1999)CrossRefGoogle Scholar
  2. 2.
    A.D. Brailsford, M. Yussouff, E.M. Logothetis, Sens. Actuators B 44, 321 (1997)CrossRefGoogle Scholar
  3. 3.
    A.O. Isenberg, Solid State Ionics 3–4, 431 (1981)CrossRefGoogle Scholar
  4. 4.
    A. Mineshinge, M. Inaba, Z. Ogumi, T. Takahashi, T. Kawagoe, A. Tasaka, K. Kikuchi, Solid State Ionics 86–88, 1251 (1996)CrossRefGoogle Scholar
  5. 5.
    H.R. Chen, J.L. Shi, W.H. Zhang, M.L. Ruan, D.S. Yan, Chem. Mater. 13, 1035 (2001)CrossRefGoogle Scholar
  6. 6.
    M.E. Zorn, D.T. Tompkins, W.A. Zeltner, M.A. Anderson, Appl. Catal. B 23, 1 (1999)CrossRefGoogle Scholar
  7. 7.
    J.H. Schattka, D.G. Shchukin, J. Jia, M. Antonietti, R.A. Caruso, Chem. Mater. 14, 5103 (2002)CrossRefGoogle Scholar
  8. 8.
    Q. Yuan, Y. Liu, L.L. Li, Z.X. Li, C.J. Fang, W.T. Duan, X.H. Li, C.H. Yan, Micropor. Mesopor. Mater. 124, 169 (2009)CrossRefGoogle Scholar
  9. 9.
    W. Zhou, K. Liu, H. Fu, K. Pan, L. Zhang, L. Wang, C. Sun, Nanotechnology 19, 035610 (2008)CrossRefGoogle Scholar
  10. 10.
    J.A. Knowles, M.J. Hudson, J. Chem. Soc. Chem. Commun. 20, 2083 (1995)CrossRefGoogle Scholar
  11. 11.
    P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature 396, 152 (1998)CrossRefGoogle Scholar
  12. 12.
    X.M. Liu, G.Q. Lu, Z.F. Yan, J. Phys. Chem. B 108, 15523 (2004)CrossRefGoogle Scholar
  13. 13.
    E.L. Crepaldi, G.J.A.A. Soler-Illia, D. Grosso, P.A. Albouy, C. Sanchez, Chem. Commun. 15, 1582 (2001)CrossRefGoogle Scholar
  14. 14.
    E.L. Crepaldi, G.J.A.A. Soler-Illia, A. Bouchara, D. Grosso, D. Durand, C. Sanchez, Angew. Chem. Int. Ed. 42, 347 (2003)CrossRefGoogle Scholar
  15. 15.
    A.S. Deshpande, M. Niederberger, Micropor. Mesopor. Mater. 101, 413 (2007)CrossRefGoogle Scholar
  16. 16.
    L. Xu, H.K. Lee, Anal. Chem. 79, 5241 (2007)CrossRefGoogle Scholar
  17. 17.
    L. Liu, X. Tan, S. Liu, J. Am. Ceram. Soc. 89, 1156 (2006)CrossRefGoogle Scholar
  18. 18.
    D.H. Deng, R. Tang, X.P. Liao, B. Shi, Langmuir 24, 368 (2008)CrossRefGoogle Scholar
  19. 19.
    S.H. Zhan, D.R. Chen, X.L. Jiao, C.H. Tao, J. Phys. Chem. B 110, 11199 (2006)CrossRefGoogle Scholar
  20. 20.
    P.J. Bruinsma, A.Y. Kim, J. Liu, S. Baskaran, Chem. Mater. 9, 2507 (1997)CrossRefGoogle Scholar
  21. 21.
    P. Yang, D. Zhao, B.F. Chmelka, G.D. Stucky, Chem. Mater. 10, 2033 (1998)CrossRefGoogle Scholar
  22. 22.
    K.T. Jung, Y.H. Chu, S. Haam, Y.G. Shul, J. Non-Cryst, Solids 298, 193 (2002)Google Scholar
  23. 23.
    S. Madhugiri, W. Zhou, J.P. Ferraris, K.J. Balkus Jr, Micropor. Mesopor. Mater. 63, 75 (2003)CrossRefGoogle Scholar
  24. 24.
    M. Macias, A. Chacko, J.P. Ferraris, K.J. Balkus Jr, Micropor. Mesopor. Mater. 86, 1 (2005)CrossRefGoogle Scholar
  25. 25.
    S. Madhugiri, B. Sun, P.G. Smirniotis, J.P. Ferraris, K.J. Balkus Jr, Micropor. Mesopor. Mater. 69, 77 (2004)CrossRefGoogle Scholar
  26. 26.
    J.Y. Chen, H.C. Chen, J.N. Lin, C.S. Kuo, Mater. Chem. Phys. 107, 480 (2008)CrossRefGoogle Scholar
  27. 27.
    C.J. Brinker, Y.F. Lu, A. Sellinger, H.Y. Fan, Adv. Mater. 11, 579 (1999)CrossRefGoogle Scholar
  28. 28.
    G. Yu, L. Zhu, X. Wang, H. Che, G. Zhang, Z. Sun, H. Fan, X. Liu, D. Xu, Micropor. Mesopor. Mater. 119, 230 (2009)CrossRefGoogle Scholar
  29. 29.
    G. Yu, L. Zhu, X. Wang, J. Liu, D. Xu, Micropor. Mesopor. Mater. 130, 189 (2010)CrossRefGoogle Scholar
  30. 30.
    L. Zhu, X. Wang, G. Zhang, Q. Ren, D. Xu, Appl. Catal. B 103, 428 (2011)CrossRefGoogle Scholar
  31. 31.
    G. Siu, M. Stokes, Y. Lui, Phys. Rev. B 59, 3173 (1999)CrossRefGoogle Scholar
  32. 32.
    P. Quintard, P. Barberis, A. Mirgorodsky, T. Merle-Mejean, J. Am. Ceram. Soc. 85, 1745 (2002)CrossRefGoogle Scholar
  33. 33.
    A. Naumenko, Iu. Gnatiuk, N. Smirnova, A. Eremenko, Thin Solid Films 520, 4541 (2012)CrossRefGoogle Scholar
  34. 34.
    M.F. Best, R.A. Condrate Sr, J. Mater. Sci. Lett. 4, 994 (1985)CrossRefGoogle Scholar
  35. 35.
    J.W. Kriesel, M.S. Sander, T.D. Tilley, Chem. Mater. 13, 3554 (2001)CrossRefGoogle Scholar
  36. 36.
    J. Chastain, R.C. King Jr (eds.), (Physical Electronics, Inc, Minneapolis, 1995)Google Scholar
  37. 37.
    Z. Luan, L. Kevan, J. Phys. Chem. B 101, 2020 (1997)CrossRefGoogle Scholar
  38. 38.
    A. Corma, M.T. Navarro, J.P. Pariente, J. Chem. Soc. Chem. Commun. 2, 147 (1994)CrossRefGoogle Scholar
  39. 39.
    E.F. Lopez, V.S. Escribano, M. Panizza, M.M. Carnasciali, G.J. Busca, Mater. Chem. 11, 1891 (2001)CrossRefGoogle Scholar
  40. 40.
    M.S. Morey, G.D. Stucky, J. Phys. Chem. B 103, 2037 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShijiazhuang Tiedao UniversityShijiazhuangPeople’s Republic of China
  2. 2.State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations