Journal of Porous Materials

, Volume 21, Issue 1, pp 53–62 | Cite as

In-situ generation of large microporous skeleton in mesoporous silica framework using different dicarboxylic acids

  • Sakthivel Gandhi
  • Swaminathan Sethuraman
  • Uma Maheswari Krishnan


Mesoporous Santa Barbara Amorphous-15 is known to possess a small fraction of micropores, in the walls of mesopores. The ratio of micropore to mesopore area can have a profound influence on the application of this highly ordered material in various fields. The present work aims to investigate the influence of dicarboxylic acids as organic structure interrupting agents on the micropore to mesopore ratio. The physiochemical characterization of the synthesized samples including electron microscopy, nitrogen adsorption–desorption isotherms, MAS 29Si-NMR, FT-IR demonstrate a distinct change in the morphology and micropore area due to the different dicarboxylic acids used during synthesis. Our results show that the decrease in chain length of the dicarboxylic acid has a direct relation to the increase in micropore area which has a significant role in the adsorption properties of mesoporous silica. Thus the dicarboxylic acid mediated tuning of the micropores area of mesoporous silica can be used for various applications.


Amorphous materials Microporous materials Nanostructures Inorganic compounds Microstructure 



The authors wish to acknowledge Nano Mission Council, DST and SASTRA University for infrastructural and financial support.


  1. 1.
    F. Qu, G. Zhu, S. Huang, S. Li, S. Qiu, ChemPhysChem 7, 400 (2006)CrossRefGoogle Scholar
  2. 2.
    C. Charnay, S. Bégu, C. Tourné-Péteilh, L. Nicole, D.A. Lerner, J.M. Devoisselle, Eur. J. Pharm. Biopharm. 57, 533 (2004)CrossRefGoogle Scholar
  3. 3.
    S.W. Song, K. Hidajat, S. Kawi, Langmuir 21, 9568 (2005)CrossRefGoogle Scholar
  4. 4.
    D.H. Hwang, D. Lee, H. Lee, D. Choe, S.H. Lee, K. Lee, Korean J. Chem. Eng. 27, 1087 (2010)CrossRefGoogle Scholar
  5. 5.
    J.M. Rosenholm, M. Lindén, J. Control Release 128, 157 (2008)CrossRefGoogle Scholar
  6. 6.
    L. Li, C. Liu, A. Geng, C. Jiang, Y. Guo, C. Hu, Mater. Res. Bull. 41, 319 (2006)CrossRefGoogle Scholar
  7. 7.
    T. Kimura, K. Kuroda, Adv. Funct. Mater. 19, 511 (2009)CrossRefGoogle Scholar
  8. 8.
    Z. Li, L. Yu, B. Dong, F. Geng, L. Zheng, G. Li, J. Dispers. Sci. Technol. 29, 1066 (2008)CrossRefGoogle Scholar
  9. 9.
    C.Y. Won, S. Andreas, Chem. Mater. 23, 1761 (2011)CrossRefGoogle Scholar
  10. 10.
    E.C.P. Anders, Science 8, 145 (2003)Google Scholar
  11. 11.
    R. Roger, M. Louis, Chem. Mater. 13, 2999 (2001)CrossRefGoogle Scholar
  12. 12.
    Y. Li, N. Li, J. Tu, X. Li, B. Wang, Y. Chi, D. Liu, D. Yang, Mater. Res. Bull. 46, 2317 (2011)CrossRefGoogle Scholar
  13. 13.
    F. Kleitz, U. Wilczok, F. Schüth, F. Marlow, Phys. Chem. Chem. Phys. 3, 3486 (2001)CrossRefGoogle Scholar
  14. 14.
    Q. Shi, Y. Yan, F. Zhang, S. Xie, B. Tu, D. Zhao, Adv. Funct. Mater. 15, 1377 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Tu, R. Wang, W. Geng, X. Lai, T. Zhang, N. Li, N. Yue, X. Li, Sens. Actuators B 136, 392 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Huang, S. Kawi, K. Hidajat, S.C. Ng, Micropor. Mesopor. Mater. 88, 254 (2006)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, Z. Zhi, T. Jiang, J. Zhang, Z. Wang, S. Wang, J. Control Release 145, 257 (2010)CrossRefGoogle Scholar
  18. 18.
    P.N. Sajo, S. Igor, Micropor. Mesopor. Mater. 116, 581 (2008)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, S. Zong, J. Yang, J. Li, Y. Cui, Biosens. Bioelectron. 26, 2883 (2011)CrossRefGoogle Scholar
  20. 20.
    G.B. Martín, E.R. Alberto, J.A.A.S. Galo, ACS Appl. Mater. Interfaces 2, 360 (2010)CrossRefGoogle Scholar
  21. 21.
    Y. Zhu, J. Shi, H. Chen, W. Shen, X. Dong, Micropor. Mesopor. Mater. 84, 218 (2005)CrossRefGoogle Scholar
  22. 22.
    Q. Huo, D. Zhao, J. Feng, K. Weston, S.K. Buratto, G.D. Stucky, Adv. Mater. 9, 974 (1997)CrossRefGoogle Scholar
  23. 23.
    J. Wang, C.K. Tsung, R.C. Hayward, Y. Wu, G.D. Stucky, Angew. Chem. Int. Ed. 44, 332 (2005)CrossRefGoogle Scholar
  24. 24.
    D. Zhao, J. Sun, Q. Li, G.D. Stucky, Chem. Mater. 12, 275 (2000)CrossRefGoogle Scholar
  25. 25.
    S.P. Naik, M. Ogura, T. Okubo, Ind. Eng. Chem. Res. 44, 4156 (2005)CrossRefGoogle Scholar
  26. 26.
    Y. Lu, R. Ganguli, C.A. Drewlen, M.T. Anderson, C.J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M.H. Huang, J.I. Zink, Nature 389, 364 (1997)CrossRefGoogle Scholar
  27. 27.
    H. Miyata, T. Suzuki, A. Fukuoka, T. Sawada, M. Watanabe, T. Noma, K. Takada, T. Mukaide, K. Kuroda, Nat. Mater. 3, 651 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Schacht, Q. Huo, I.G. VoigtMartin, G.D. Stucky, F. Schüth, Science 273, 768 (1996)CrossRefGoogle Scholar
  29. 29.
    M.C. Chao, D.S. Wang, H.P. Lin, C.Y. Mou, Mater. Chem. 13, 2853 (2003)CrossRefGoogle Scholar
  30. 30.
    C. Yu, B. Tian, J. Fan, G.D. Stucky, D. Zhao, J. Am. Chem. Soc. 124, 4556 (2002)CrossRefGoogle Scholar
  31. 31.
    A. Sayari, Angew. Chem. Int. Ed. 39, 2920 (2000)CrossRefGoogle Scholar
  32. 32.
    D. Yan, X.J. Meng, S.G. Li, F.S. Xiao, Micropor. Mesopor. Mater. 82, 121 (2005)CrossRefGoogle Scholar
  33. 33.
    J.B. Pang, K.Y. Qiu, Y. Wei, J. Non Cryst. Solids 283, 101 (2001)CrossRefGoogle Scholar
  34. 34.
    L. Hong-Ping, M. Chung-Yuan, Acc. Chem. Res. 35, 927 (2002)CrossRefGoogle Scholar
  35. 35.
    M.K. Naskar, M. Eswaramoorthy, J. Chem. Sci. 120, 181 (2008)CrossRefGoogle Scholar
  36. 36.
    C. Cooper, R. Burch, Water Res. 33, 3689 (1999)CrossRefGoogle Scholar
  37. 37.
    D. Zhu, H. Zhang, Q. Tao, Z. Xu, S. Zheng, Environ. Toxicol. Chem. 28, 1400 (2009)CrossRefGoogle Scholar
  38. 38.
    V. Meynen, P. Cool, E.F. Vansant, Micropor. Mesopor. Mater. 125, 170 (2009)CrossRefGoogle Scholar
  39. 39.
    G. Cavallaro, P. Pierro, F.S. Palumbo, F. Testa, L. Pasqua, R. Aiello, Drug Deliv. 11, 41 (2004)CrossRefGoogle Scholar
  40. 40.
    M.K. Arouaa, S.P.P. Leonga, L.Y. Teoa, C.Y. Yin, W.M.A.W. Daud, Bioresour. Technol. 99, 5786 (2008)CrossRefGoogle Scholar
  41. 41.
    B.H. Hameed, A.L. Ahmad, K.N.A. Latiff, Dyes Pigm. 75, 143 (2007)CrossRefGoogle Scholar
  42. 42.
    A.M. Peers, J. Catal. 4, 499 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sakthivel Gandhi
    • 1
  • Swaminathan Sethuraman
    • 1
  • Uma Maheswari Krishnan
    • 1
  1. 1.Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and BiotechnologySASTRA UniversityThanjavurIndia

Personalised recommendations