Advertisement

Journal of Porous Materials

, Volume 21, Issue 1, pp 15–21 | Cite as

Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation

  • Lunlun Gong
  • Yonghong Wang
  • Xudong Cheng
  • Ruifang Zhang
  • Heping Zhang
Article

Abstract

Porous mullite ceramics were prepared from an industrial grade mullite powder by foaming and starch consolidation. The viscosities of the original suspensions and the foamed ones with solid loading of 62.5 and 67.5 wt% were measured. After the steps of forming and drying, the green bodies were sintered under different temperatures from 1,200 to 1,600 °C for 2 h. The influence of solid loading of suspension and sintering temperature on the porosity and compressive strength was evaluated. The sintered mullite ceramics, with porosity from 86 to 73 vol% and corresponding compressive strength from 1 to 22 MPa, contained a multi-modal microstructure with large spherical pores and small pores on internal walls. Thermal conductivity measurement carried out by the transient plane source technique at room temperature resulted in values as low as 0.09 W/mK. In addition, the relationship between thermal conductivity and porosity was discussed in detail.

Keywords

Mullite Porosity Thermal conductivity Porous ceramics 

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB719700) and the Open Project Program of the State Key Lab of Fire (Grant No. HZ2011-KF10), University of Science and Technology of China.

References

  1. 1.
    A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 89, 1771 (2006)CrossRefGoogle Scholar
  2. 2.
    B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 26, 3567 (2006)CrossRefGoogle Scholar
  3. 3.
    L. Hu, C.A. Wang, Y. Huang, J. Mater. Sci. 45, 3242 (2010)CrossRefGoogle Scholar
  4. 4.
    F. Yang, C. Li, Y. Lin, C.A. Wang, Mater. Lett. 73, 36 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Schneider, J. Schreuer, B. Hildmann, J. Eur. Ceram. Soc. 28, 329 (2008)CrossRefGoogle Scholar
  6. 6.
    H. Abe, H. Seki, A. Fukunaga, M. Egashira, J. Mater. Sci. 29, 1222 (1994)CrossRefGoogle Scholar
  7. 7.
    Y.F. Liu, X.Q. Liu, H. Wei, G.Y. Meng, Ceram. Int. 27, 1 (2001)CrossRefGoogle Scholar
  8. 8.
    J.H. She, T. Ohji, Mater. Chem. Phys. 80, 610 (2003)CrossRefGoogle Scholar
  9. 9.
    R. Barea, M.I. Osendi, P. Miranzo, J.M.F. Ferreira, J. Am. Ceram. Soc. 88, 777 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Ding, Y. Zeng, D. Jiang, J. Am. Ceram. Soc. 90, 2276 (2007)CrossRefGoogle Scholar
  11. 11.
    X. Mao, S. Wang, S. Shimai, Ceram. Int. 34, 107 (2008)CrossRefGoogle Scholar
  12. 12.
    H.X. Peng, Z. Fan, J.R.G. Evans, J.J.C. Busfield, J. Eur. Ceram. Soc. 20, 807 (2000)CrossRefGoogle Scholar
  13. 13.
    O. Lyckfeldt, J.M.F. Ferreira, J. Eur. Ceram. Soc. 18, 131 (1998)CrossRefGoogle Scholar
  14. 14.
    P. Sepulveda, J.G.P. Binner, J. Eur. Ceram. Soc. 19, 2059 (1999)CrossRefGoogle Scholar
  15. 15.
    P. Colombo, J.R. Hellmann, D.L. Shelleman, J. Am. Ceram. Soc. 84, 2245 (2001)CrossRefGoogle Scholar
  16. 16.
    X.J. Mao, S.Z. Shimai, S.W. Wang, J. Eur. Ceram. Soc. 28, 217 (2008)CrossRefGoogle Scholar
  17. 17.
    H. Yi, Thermochim. Acta 436, 122 (2005)CrossRefGoogle Scholar
  18. 18.
    M. Gustavsson, E. Karawacki, S.E. Gustafsson, Rev. Sci. Instrum. 65, 3856 (1994)CrossRefGoogle Scholar
  19. 19.
    B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 27, 1345 (2007)CrossRefGoogle Scholar
  20. 20.
    L.M. Russell, L.F. Johnson, D.P.H. Hasselman, R. Ruh, J. Am. Ceram. Soc. 70, C-226 (1987)CrossRefGoogle Scholar
  21. 21.
    T.M. Kyaw, Y. Okamoto, K. Hayashi, J. Ceram. Soc. Jpn. 103, 1289 (1995)CrossRefGoogle Scholar
  22. 22.
    R. Barea, M.I. Osendi, J.M.F. Ferreira, P. Miranzo, Acta Mater. 53, 3313 (2005)CrossRefGoogle Scholar
  23. 23.
    J.K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, Int. J. Heat Mass Transf. 48, 2150 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lunlun Gong
    • 1
  • Yonghong Wang
    • 2
  • Xudong Cheng
    • 1
  • Ruifang Zhang
    • 1
  • Heping Zhang
    • 1
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations