Skip to main content

Advertisement

Log in

Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous mullite ceramics were prepared from an industrial grade mullite powder by foaming and starch consolidation. The viscosities of the original suspensions and the foamed ones with solid loading of 62.5 and 67.5 wt% were measured. After the steps of forming and drying, the green bodies were sintered under different temperatures from 1,200 to 1,600 °C for 2 h. The influence of solid loading of suspension and sintering temperature on the porosity and compressive strength was evaluated. The sintered mullite ceramics, with porosity from 86 to 73 vol% and corresponding compressive strength from 1 to 22 MPa, contained a multi-modal microstructure with large spherical pores and small pores on internal walls. Thermal conductivity measurement carried out by the transient plane source technique at room temperature resulted in values as low as 0.09 W/mK. In addition, the relationship between thermal conductivity and porosity was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 89, 1771 (2006)

    Article  CAS  Google Scholar 

  2. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 26, 3567 (2006)

    Article  CAS  Google Scholar 

  3. L. Hu, C.A. Wang, Y. Huang, J. Mater. Sci. 45, 3242 (2010)

    Article  CAS  Google Scholar 

  4. F. Yang, C. Li, Y. Lin, C.A. Wang, Mater. Lett. 73, 36 (2012)

    Article  CAS  Google Scholar 

  5. H. Schneider, J. Schreuer, B. Hildmann, J. Eur. Ceram. Soc. 28, 329 (2008)

    Article  CAS  Google Scholar 

  6. H. Abe, H. Seki, A. Fukunaga, M. Egashira, J. Mater. Sci. 29, 1222 (1994)

    Article  CAS  Google Scholar 

  7. Y.F. Liu, X.Q. Liu, H. Wei, G.Y. Meng, Ceram. Int. 27, 1 (2001)

    Article  Google Scholar 

  8. J.H. She, T. Ohji, Mater. Chem. Phys. 80, 610 (2003)

    Article  CAS  Google Scholar 

  9. R. Barea, M.I. Osendi, P. Miranzo, J.M.F. Ferreira, J. Am. Ceram. Soc. 88, 777 (2005)

    Article  CAS  Google Scholar 

  10. S. Ding, Y. Zeng, D. Jiang, J. Am. Ceram. Soc. 90, 2276 (2007)

    Article  CAS  Google Scholar 

  11. X. Mao, S. Wang, S. Shimai, Ceram. Int. 34, 107 (2008)

    Article  CAS  Google Scholar 

  12. H.X. Peng, Z. Fan, J.R.G. Evans, J.J.C. Busfield, J. Eur. Ceram. Soc. 20, 807 (2000)

    Article  CAS  Google Scholar 

  13. O. Lyckfeldt, J.M.F. Ferreira, J. Eur. Ceram. Soc. 18, 131 (1998)

    Article  CAS  Google Scholar 

  14. P. Sepulveda, J.G.P. Binner, J. Eur. Ceram. Soc. 19, 2059 (1999)

    Article  CAS  Google Scholar 

  15. P. Colombo, J.R. Hellmann, D.L. Shelleman, J. Am. Ceram. Soc. 84, 2245 (2001)

    Article  CAS  Google Scholar 

  16. X.J. Mao, S.Z. Shimai, S.W. Wang, J. Eur. Ceram. Soc. 28, 217 (2008)

    Article  CAS  Google Scholar 

  17. H. Yi, Thermochim. Acta 436, 122 (2005)

    Article  Google Scholar 

  18. M. Gustavsson, E. Karawacki, S.E. Gustafsson, Rev. Sci. Instrum. 65, 3856 (1994)

    Article  CAS  Google Scholar 

  19. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 27, 1345 (2007)

    Article  CAS  Google Scholar 

  20. L.M. Russell, L.F. Johnson, D.P.H. Hasselman, R. Ruh, J. Am. Ceram. Soc. 70, C-226 (1987)

    Article  Google Scholar 

  21. T.M. Kyaw, Y. Okamoto, K. Hayashi, J. Ceram. Soc. Jpn. 103, 1289 (1995)

    Article  CAS  Google Scholar 

  22. R. Barea, M.I. Osendi, J.M.F. Ferreira, P. Miranzo, Acta Mater. 53, 3313 (2005)

    Article  CAS  Google Scholar 

  23. J.K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, Int. J. Heat Mass Transf. 48, 2150 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB719700) and the Open Project Program of the State Key Lab of Fire (Grant No. HZ2011-KF10), University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, L., Wang, Y., Cheng, X. et al. Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation. J Porous Mater 21, 15–21 (2014). https://doi.org/10.1007/s10934-013-9741-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9741-z

Keywords

Navigation