Journal of Porous Materials

, Volume 20, Issue 6, pp 1501–1507 | Cite as

Fabrication of Si3N4 preforms from Si3N4 produced via CRN technique

  • Fatih Çalışkan
  • Adem Demir
  • Zafer Tatlı


Ceramic preforms with randomly distributed particles as reticulated porous structure which are generally used for metal infiltration as reinforcement, membranes, catalyst supports etc. Preforms are characterized by open porosity making possible their infiltration by liquid metal alloys. In this work, quartz powders using carbon black as a reducing agent were used for alpha Si3N4 powders synthesis through a carbothermal reduction and nitridation (CRN) process. The CRN process was carried out under nitrogen flow at 1,450 °C for 4 h. At high temperatures, carbon as reducing agent reacts with the oxygen of SiO2, and the resulting metallic silicon compounds with nitrogen gas to obtain silicon nitride powder. The reacted powders were used to obtain reticulated ceramic by replica method. The powders containing various bentonite ratios were mixed in water to prepare slurry. The slurry was infiltrated into a polyurethane sponge. A high porous ceramic foam (preform) structure was achieved after burn out of the sponge. All ceramic preforms were sintered to increase stiffness (in the temperature range 900–1,350 °C). The sintered ceramic foams were subjected to compressive tests. The scanning electron microscopy was used to examine the reticulated ceramic foam structure, and X-ray diffraction analysis was performed to determine phases.


Si3N4 Ceramic preform CRN SiO2 Replica technique 


  1. 1.
    S. Hampshire, Silicon nitride ceramics—review of structure, processing and properties. J. Achiev. Mater. Man. Eng. 24(1), 43–50 (2007)Google Scholar
  2. 2.
    K.H. Jack, Nitrogen ceramics for engine applications. Mater. Sci. Forum 255, 325–326 (2000)Google Scholar
  3. 3.
    N. Kawai, T. Kotani, Y. Kakimoto, E. Sato, Fracture behavior of silicon nitride ceramics under combined compression—–torsion stresses analyzed by multiaxial fracture statistics. J. Eur. Ceram. Soc. 31(9), 1827–1833 (2011)CrossRefGoogle Scholar
  4. 4.
    C.C. Guedes-Silva, F.M. de Souza Carvalho, J.C. Bressiani, Effect of rare-earth oxides on properties of silicon nitride obtained by normal sintering and sinter-HIP. J. Rare Earths 30(11), 1177–1183 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Chen, Z. Huang, Y.G. Liu, M. Fang, J. Huang, Y. Xu, Synthesis of β-Si3N4 powder from quartz via carbothermal reduction nitridation. Powder Technol. 235, 728–734 (2013)CrossRefGoogle Scholar
  6. 6.
    K. Nuray, A.O. Kurt, C. Duran, C. Öztürk, H.Ö. Toplan, Sintering behaviour of silicon nitride powders produced by carbothermal reduction and nitridation. Adv. Powder Technol. (11 Jan 2013, in press)Google Scholar
  7. 7.
    D.Y. Chen, B.L. Zhang, H.R. Zhuang, W.L. Li, Combustion synthesis of network silicon nitride porous ceramics. Ceram. Int. 29(4), 363–364 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Demir, F. Caliskan, Fabrication of porous β-SiAlON preforms from kaolin for liquid metal infiltration. Mater. Sci. Forum 554, 85–89 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Scheffler, P. Colombo, Ceramics: Structure, Manufacturing, Properties and Applications (Wiley-VCH, Weinheim, 2005), pp. 416–584CrossRefGoogle Scholar
  10. 10.
    A. Ortega, M.D. Alcalá, C. Real, Carbothermal synthesis of silicon nitride (Si3N4): kinetics and diffusion mechanism. J. Mater. Process. Technol. 195(1–3), 224–231 (2008)CrossRefGoogle Scholar
  11. 11.
    V. Suwanmethanond, E. Goo, P.K. Liu, T. Johnston, G. Sahimi, T.T. Tsotsis, Porous silicon carbide sintered substrates for high-temperature membranes. Ind. Eng. Chem. Res. 39, 3264–3271 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Fukushima, Y. Zhou, Y. Yoshizawa, Fabrication and microstructural characterization of porous silicon carbide with nano-sized powders. Mater. Sci. Eng., B 148, 211–214 (2008)CrossRefGoogle Scholar
  13. 13.
    J.F. Yang, T. Ohji, S. Kanzak, A. Diaz, S. Hampshire, Microstructure and mechanical properties of silicon nitride ceramics with controlled porosity. J. Am. Ceram. Soc. 85(6), 1512–1516 (2002)CrossRefGoogle Scholar
  14. 14.
    F. Chen, L. Ma, Q. Shen, L. Zhang, Pore structure control of starch processed silicon nitride porous ceramics with near-zero shrinkage. Mater. Lett. 65(9), 1410–1412 (2011)CrossRefGoogle Scholar
  15. 15.
    M.C. Anderson, R. Olsen, Bone ingrowth into porous silicon nitride. J. Biomed. Mater. Res. A 92A, 41598–41605 (2010)Google Scholar
  16. 16.
    B.S. Bal, M.N. Rahaman, Orthopedic applications of silicon nitride ceramics. Acta Biomater. 8(8), 2889–2898 (2012)CrossRefGoogle Scholar
  17. 17.
    T.E. Wilkes, M.L. Young, R.E. Sepulveda, D.C. Dunand, K.T. Faber, Composites by aluminum infiltration of porous silicon carbide derived from wood precursors. Scr. Mater. 55, 1083–1086 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Fukushima, Y. Zhou, H. Miyazaki, Y. Yoshizawa, K. Hirao, Y. Iwamoto, S. Yamazaki, T. Nagano, Microstructural characterization of porous silicon carbide membrane support with and without alumina additive. J. Am. Ceram. Soc. 89, 1523–1529 (2006)CrossRefGoogle Scholar
  19. 19.
    U.F. Vogt, L. Gyorfy, A. Herzog, T. Graule, G. Plesch, Macroporous silicon carbide foams for porous burner applications and catalyst supports. J. Phys. Chem. Solids 68, 1234–1238 (2007)CrossRefGoogle Scholar
  20. 20.
    J.S. Lee, S.H. Lee, S.C. Choi, Improvement of porous silicon carbide filters by growth of silicon carbide nanowires using a modified carbothermal reduction process. J. Alloys Compd. 467, 543–549 (2009)CrossRefGoogle Scholar
  21. 21.
    J.W. Kaczmar, K. Pietrzak, W. Wosinaski, The production and application of metal matrix composite materials. J. Mater. Proc. Tech. 106(1–3), 58–67 (2000)CrossRefGoogle Scholar
  22. 22.
    D.B. Miracle, Metal matrix composites–from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)CrossRefGoogle Scholar
  23. 23.
    E. Vogli, J. Mukerji, C. Hoffman, R. Kladny, H. Sieber, P. Greil, Conversion of oak to cellular silicon carbide ceramic by gas-phase reaction with silicon monoxide. J. Am. Ceram. Soc. 84, 1236–1240 (2001)CrossRefGoogle Scholar
  24. 24.
    L. Esposito, D. Sciti, A. Piancastelli, A. Bellosi, Microstructure and properties of porous SiC template from soft woods. J. Eur. Ceram. Soc. 24, 533–540 (2004)CrossRefGoogle Scholar
  25. 25.
    A. Herzog, U. Vogt, O. Kaczmarek, R. Klingner, K. Richter, H. Thoemen, Porous SiC ceramics derived from tailored wood-based fiberboards. J. Am. Ceram. Soc. 89, 1499–1503 (2006)CrossRefGoogle Scholar
  26. 26.
    Y.W. Kim, J.H. Eom, C. Wang, C.B. Park, Processing of porous silicon carbide ceramics from carbon-filled polysiloxane by extrusion and carbothermal reduction. J. Am. Ceram. Soc. 91, 1361–1364 (2008)CrossRefGoogle Scholar
  27. 27.
    J.H. Eom, Y.W. Kim, I.H. Song, H.D. Kim, Processing and properties of polysiloxane-derived porous silicon carbide ceramics using hollow microspheres as templates. J. Eur. Ceram. Soc. 28, 1361–1364 (2008)CrossRefGoogle Scholar
  28. 28.
    Y.W. Kim, S.H. Kim, I.H. Song, H.D. Kim, C.B. Park, Fabrication of open-cell. Microcellular silicon carbide ceramics by carbothermal reduction. J. Am. Ceram. Soc. 88, 2949–2951 (2005)CrossRefGoogle Scholar
  29. 29.
    A. Demir, Z. Tatlı, F. Çalışkan, A.O. Kurt, Carbothermal reduction and nitridation of quartz mineral for the production of alpha silicon nitride powders. Mater. Sci. Forum 554, 163–168 (2007)CrossRefGoogle Scholar
  30. 30.
    J.F. Yang, S.Y. Shan, R. Janssen, G. Schneider, T. Ohji, S. Kanzaki, Synthesis of fibrous β-Si3N4 structured porous ceramics using carbothermal nitridation of silica. Acta Mater. 53, 2981–2990 (2005)CrossRefGoogle Scholar
  31. 31.
    A. Pawelec, B. Strojek, G. Weisbrod, S. Podsiadlo, Preparation of silicon nitride powder from silica and ammonia. Ceram. Inter. 28, 495–501 (2002)CrossRefGoogle Scholar
  32. 32.
    S. Shan, Q. Jia, L. Jiang, Y. Wang, J. Yang, Microstructure control and mechanical properties of porous silicon nitride ceramics. Ceram. Inter. 35, 3371–3374 (2009)CrossRefGoogle Scholar
  33. 33.
    A.O. Kurt, T.J. Davies, Sepiolite-PAN intercalation used as Si3N4 forming precursor. J. Mater. Sci. 36, 957–962 (2001)CrossRefGoogle Scholar
  34. 34.
    D. Jia, Y. Shaob, B. Liuc, Y. Zhou, Characterization of porous silicon nitride/silicon oxynitride composite ceramics produced by sol infiltration. Mater. Chem. Phys. 124, 97–101 (2010)CrossRefGoogle Scholar
  35. 35.
    K. Bodišováa, M. Kašiarová, M. Domanická, M. Hnatko, Z. Lenčéš, Z.V. Nováková, J. Vojtaššák, S. Gromošová, P. Šajgalík, Porous silicon nitride ceramics designed for bone substitute applications. Ceram. Inter. doi: 10.1016/j.ceramint.2013.04.015

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials Engineering, Faculty of TechnologySakarya UniversitySakaryaTurkey

Personalised recommendations